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@g What's coming up next?

All papers are open access and are linked on my website: nicolepaul.io
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A primer on disaster risk modeling
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Introduction

Paul Nicole, Carmine Galasso, and Jack Baker. 2024. “Household Displacement
and Return in Disasters: A Review.” Natural Hazards Review 25 (1): 03123006.
https.//doi.org/10.1061/NHREFO.NHENG-1930
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Why study population displacement?

The scale of human impact

INn 2020 alone, at least 30 million were displaced due to natural hazards. By the
end of the year, at least 7 million were still displaced

Increasing risk under current trends

The annual number displaced from disasters is expected to increase, driven by
oopulation growth in hazard-prone areas and exacerpated by climate change

A more equitable risk metric

Existing disaster risk assessments tend to focus on economic loss, a metric that
often highlights the wealthiest as the most at-risk
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Scope and definitions

Residential migration

The movement of households from their habitual residence to other housing

Displacement (Involuntary migration)

The forced movement of households from their habitual residence,

as triggered by:

m Conflict & violence Other categories

due to geophysical and due to bombardments, threats of due to development projects,
weather-related hazards armed attack, gang harassment evictions, policies, etc.

S L LGEEE Slow onset

Emerges quickly Emerges gradually
(e.g. earthquakes) (e.g. droughts)

Voluntary migration

The voluntary movement of households
(e.g., economic opportunity)
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The importance of duration

Event occurs

Minutes to days ahead Days to months after

Early warning Emergency
People are pre-emptively People are temporarily
evacuated and lives are displaced and seek refuge

potentially saved with family and friends, In

rentals or hotels, and In
public shelters

Months to years after

Recovery

People consider waiting
while housing and
Infrastructure are repaired
or resettling elsewhere
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Consequences of protracted displacement

Protracted disp

nouseholds anc

Loss of
livelihood

acement Is associated with negative consequences for

the community

Disrupted
education

Reduced
supports

Psychosocial
issues

0000

Worsened
housing
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Household decisions to return

Physical damage

Habita b|||ty Of hOUSiﬂg (damage, weather, utilities)
Housing type

Community damage
Reconstruction progress

Household demographics

Socioeconomic status (e.g., iIncome)
Housing and land tenure

Race/ethnicity/caste
Age

Psychological & social phenomena

Acceleration of ongoing trends
Attachment to place

Social capital (networks, family/friends)
Perceived risk

Pre- and post-disaster policies

Pre-existing housing conditions (e.g., vacancies)
Housing reconstruction approaches
Other disaster assistance policies

DE|RISC Lab n



The role of
housing damage

Paul, Nicole, Carmine Galasso, Vitor Silva, and Jack Baker. 2024. “Population
Displacement after Earthquakes: Benchmarking Predictions Based on Housing
Damage.” Seismica 3 (2). httpsy/doi.org/10.26443/seismica.v3i2.1374.

DE|RISC Lab ﬂ


https://doi.org/10.26443/seismica.v3i2.1374

What is the standard practice?

Despite the range of factors that influence household return identified in
the literature review, standard practice Is to consider just housing damage

Destroyed homes Average household size Displaced population

S ()
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Selecting past earthquake scenarios

Recency of the earthguake event

The exposure models used for the scenario analysis are representative of
the year 2021 and would not be representative for older events

Diverse geographic coverage

Locations were chosen to cover different tectonic regions, standard
construction practices, and levels of data availability

Availability of mobile location data-based estimates

Most estimates assume housing destruction as the primary driver,
whereas mobile location estimates do not rely on this assumption
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Selecting past earthquake scenarios
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Benchmarking displaced estimates
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The scenario model estimates were largely consistent with the official reports,
albeit with a broad range of uncertainty:.
The mobile location data estimates were closer to the distribution tails

ﬁ
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Benchmarking displaced estimates over time

Displacement rate

Japan
2016 M, 7.0 Kumamoto
0.30 -
Mobile estimate = 25.5% (Day 0)
0.25 -+
0.20 -+
OQ estimate = 14.6%
0.15 - (top 33 most damaged districts per scenario model)
016 Mobile estimate = 12.8% (Day 160)
A OQ estimate = 9.9%
(same 33 districts as Yabe et al. 2020)
0.05 -
Mobile estimate from Yabe et al. (2020)
0.00 -— . ! | |

| | | |
0 20 40 60 80 100 120 140 160
Days since mainshock

-stimating displacement using only
Nousing damage seems to estimate
ootential long-term housing needs
realistically

However, this approach offers no view
on displacement duration or return
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Understanding the role of damage

Scenario model estimates based on housing damage show some promise

The models using damage as a displacement driver were consistent with official
reports and long-term mobile location estimates, but have large uncertainty

Quantification of displacement duration remains a challenge

Official reports lack information on displacement over time, and the model
estimates using housing damage similarly lack a time component

Mobile location data-based estimates require further benchmarking

Mobile location data could fill the data gap on duration, but further investigation
on the displacement criterion & sample representativeness is needed
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The duration
of displacement

Paul, Nicole, Carmine Galasso, Jack Baker, and Vitor Silva. 2025. “A predictive model
for household displacement duration after disasters.” Risk Analysis.
https//onlinelibrary.wiley.com/doi/10.1111/risa.17710
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Household displacement in US disasters

Since 2021, 1.1% of households have Proportion of households that were displaced
been displaced by disasters in the US ( ¥y

.} a7

WA

Percent of households
displaced due to disasters

<0.5% National average = 1.2%
0.5% - 1%

- 1%-15%  Top 3states:
Louisiana = 7.5%
W 15%-3%  Eiorida = 4.8%

B > 3% Texas =1.9% b [

2 -

J i ~
Based on aggregate statistics from the United States Hous&;ju_o_ld‘ Pulse Sun{py;through July 2024

DE|RISC Lab ﬂ



Household displacement in US disasters

Since 2021 1.19% of households have
been displaced by disasters in the US

Most households returned quickly
o Within a week: 43%
o Within a month: 23%

Others faced protracted displacement
« One tosix months: 12%
 Qver six months: 8%

e Not returned: 14%

Proportion of displaced households that took >Imo to return

Percent of households displaced
into the recovery phase

<10% National average = 20%
- 10%-20% T
] ‘op 3 states:
B 20%-30% Vi necota = 42%
W 30%-40%  North Dakota = 40%
Bl > 40% Connecticut = 39% %

Based on aggregate statistics from the United States Hou

s&gld Pulse SuNMhmugh July 2024
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Household displacement in US disasters

DE|RISC Lab ﬁ

Since 2021 1.1% of households have Proportion of displaced households that have not returned

been displaced by disasters in the US i B AN

Most households returned quickly

«  Within a week: 43% i
« Within a month: 23% Ty
ﬁ CA
Others faced protracted displacement |
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Exploring trends and fitting predictive models

The availability of microdata allows us
to explore trends various factors have

with displacement durations:
 Property damage
« Lifeline disruption
« Household demographics

e Area-pbased attributes

VWe can also fit predictive models for
household displacement durations
and evaluate their performance

% Household displacement in recent US disasters
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Predicting household return after disasters

Output variable Input variables
Displacement duration Physical factors
1. Emergency phase - Property damage

(return in less than 1 month) - Lifeline disruption

2. Recovery phase (electricity loss, water
(return after 1 monthn) shortage, unsanitary

2 Not returned conditions, food shortage)

- Dwelling type
- Hazard type

Socioeconomic factors

- Household demographics
(e.g., Income level, tenure,
race/ethnicity, age, size)

- Area-pbased statistics (e.qg,,
vacancy rates, numiber of
disaster declarations,
unemployment rate)
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Classification tree | Simple model for risk analys

Classification trees allow straightforward implementation within disaster risk
analyses, allowing us to restrict the number of predictors

Property
damage

/ Otherwise/\p\ IO\
Property .
<damage> Gwelllng ty@

/\Other (RV,

otherwise van, boat, etc.)

/

Not
Gnure St&t@ GHUI’G St&t@

N

Owned otherwise Owned otherwise

Emergency Recovery Recovery Not
phase phase phase returned

otherwise Moderate

IS
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Random forest | Adding complexity

2anac

ored

om forest models can incorporate all considered factors and improve

iIctions relative to individual trees

DECIEIQH TREE-1 DECIEII‘JH TREE-1 DECIEI'DH TREE-1

RESULT-1 RESULT-2 RESULT-N

L’ MAJORITY VOTING / AVERAGING 4_|

Source: https//www.spotfire.com/glossary/what-is-a-random-forest
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Random forest | Explaining complexity

Recent advances in explainable Al have aimed to
improve the interpretability of machine learning models

Shapley Additive exPlanations (SHAP) have been
oroposed to quantity the marginal contribution of
individual features on model predictions.

SHAP can also account for interaction effects.

We calculate SHAP values for each variable, such that
Final prediction = Baseline prediction + X(SHAP values)

ARTICLES

hitps:/5idol.ong. 1010 238,/54 2256-019-01138-3

nare

machine intelligence

From local explanations to global understanding
with explainable Al for trees

Scott M. Lundberg"?, Gabriel Erion 723 Hugh Chen®, Alex DeGrave®?, Jordan M. Prutkin®, Bala Nair®®,
Ronit Katz?, Jonathan Himmalfarb®, Nisha Bansal” and Su-In Lea © **

Tree-based machine learning models such as random forests, decision trees and gradient boosted trees are popular nondin-
ear predictive models, yet comparatively [tthe attention has been paid to explaining their predictions. Here we improve the
interpretability of tree-based models through three main contributions. (1) A polynomial time algerithm te compute optimal
explanations based on game theory. (2} A new type of explanation that directly measures local feature interaction effects.
{3} A new set of toals for understanding ghobal model structurne based on combining many local explanations of each prediction.
We apply these toals to three medlesl machine leaming problems and show hew comblnlng mamy kigh-quality lacal explana-
tions allows us to represent global structure while retaining local faithfulness to the original model. These tools enable us
to (1) identify high-magnitude but low-frequency nonlinear martality risk factors in the US population, (2) highlight distinct
population subgroups with shared risk characteristies, (3) identify nonlinear interaction effects amang risk factors for chranic
kidney diseasa and (4) moniter a machine learning medeal deployed in a hospital by identifying which features are degrading
the model's performance over time. Given the popularity of tree-based maching learning models, thess improvements to their

interpretability have implications across a broad set of domains.

achine Jearning models based on trees are the mosk pop-
ular oonliear maodels i we woday'. Random forests,

gradieit boosted trees and other wee-based models ave
nsed b finance, medicine, bology, custouner setention, adverasiog.
supply chain management, manufacturing, public kealth and ather
areas 10 oaake predictions based op sets of input fesbases (Fig 1o,
feft), For these applications, models often soest be both accarsts and
witerpretable, wheks interpretability means that we can undersfand
horw the oxsdel wses inpul features b make prediclions’. Howerer,
despite the ich histeey of global nterpretation methods for trees,
which suveenarize che ionpact of Ingpat featiees oo the model a5 4
whole, muich less attention has been paid to bogal expla
which reveal e impact of inpat features on individual prediclions
fthat iz, for a single sanuplel [Fig, La, right).

Corrent local cxplanation methods include: (L) reporting the
decision path, (2] using 2 heuristic approach that assipny eredil
1o each bapul Festure® and (33 applving vaciows model-agrestic
agproacics that nequiee pepeatedly executlog the weedel for cach
explumation . Bach current methad has limilations, s, simply
reporting o prediclion decison path is wnhelplul for mest masdels,
particulasly those based on maltiple trees. Second, the belaviour of
the heurtstle credit allocation has yet to be carcfully anabrsed; we
show here that it is strongly biased w alter the impact of featunzs
based cos i tree depth, Thizd, stisce mode-agirodtie methods rely
o post hee medellng of an abitracy fonetion, they can be alow
ancl suffer frim samipling variability.

Wi presenl TreeExplainer, an explanation method oz trees thal
enabies the tractable computation of optoal local explanationss, as
defined by dealrable propertics frotn gavse theory. TreeBaplainer
bridges theery o practice by building en previows mode -agnostiz

work based on classic game-theoretic Shapley valaes™»" Tt v boes
taree nolable improvements.

1. Exact computaston of Shapley vabae explanasions for trec-besed
models, Classic Shaplev valuss can be considered ‘optimal’
abivce, withii @ lange class of approaches, they are the anly way
i Lvesauee feature ioportance whdle oralntalndog several nabazal
properties from cooporative pans theory! . Unfortunately, io
generl, these values can only be approximated sioce cumpul-
ng them exactly B NIP-hard”, vequiring a sumusstion over all
feame subsets. Saropliagr-beased approedmanians baee Been pro-
posed ' hiowsrer, using thern to comipaste low-ymrianc e wersions
af U resalts in this gaper for even our smallest dataset wowld
oonswme pears of CI'U thee (pactsoulacly for lateraction effects),
By focusing specifically on trees, we developed an alzocithm that
coHmples leical uxpl:mu'hm'u hased i exacl Sha.pte-}'whns in
potviomial Eme. This provides Local explustions witl deeareti-
cal guarantoes of lecal acouracy and conslstenayr” [Methoda),

L E:;tu'u:]'mﬁ incml etplmahn'ru 11 EIma:IL].' alplury ﬁah.!:!':.inhsmm
Lipass. Local explanations thal assign asingle aurnber to each inpat
Teruee, wihdle very Inmuitive, cannot direcily sepresent luteraction
cffects, We poovide & theareticalby grovusded way o toessuee 1o-
wal interaction effects based on o generalization of Shapley values
progosed G game theory liverature'. We show Ueat this approach
presldes valiable inesighee e a nuodel’s bebaviaiae,

3 Tuals for interpreting global mecde strocture based on many
Tocal explanations. The ability s elficiently and exactly compute
local explasations wsiog Shapley values acioss an entive dabaser
cpables the developnient of @ range of tools to nterpret & roed-
el global behavivur (Fig. 1) We shiw that combining many

Micracal: Feseparch, @edmord, Wi, U8 “Faul G, Allen Schoal of Compubsr Soerce and Ingineering, LUnfeersiy of Washingion, Seattle, Vs, U5a,
"ed cal Scientist Trairng Progran, Lniversiy of Washirgion, Szadtle, Wa, USA, “Division of Cadiolagy, Department of Med dine, Univessity o
‘Washingtor, Seattle Wb, USE “Darartnert of Arasthrsialagy and Pan Medicing, Lnkeers oy of Washirgion, Sasttle, W, (58, "Harhervlas Injiry
Fravantian ard Roaseaach Center, Linbearsiby of Wiashonghon, Seattle, Wa, Lsa "idary Besearch institata, Division of Mepbralegs, Departmant of
Shedicimm, riversily of Wasiinglun, Sealls W8 D5A Ceepail: casfesmc mashineglonedu

5 FATURE MUACHINE INTELLFGERCE | WOL2 LANUARY 2020 | S6-67 | wwwnat oz com satmiachinbe

Lundberg, Scott M., Gabriel Erion, Hugh Chen, Alex DeGrave, Jordan M. Prutkin, Bala
Nair, Ronit Katz, Jonathan Himmelfarb, Nisha Bansal, and Su-In Lee. 2020. “From
Local Explanations to Global Understanding with Explainable Al for Trees.” Nature
Machine Intelligence 2 (1): 56-67. https./doi.org/10.1038/542256-019-0138-9,
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Explaining individual return predictions

Household #2022

Baseline probability

Property damage = Some

Income per HH member = $50-100k
Tenure status = Owner

Dwelling type = Single-family

—00d shortage = Not at all

Hazard type = Hurricane

All other factors

Final probability

Emergency phase
(return within 1 month)

335%

+20%

+3%
+19
+19%
+2%
+2%
+19

035%

Recovery phase
(return after 1 month)

35%

-12%

+19

Not returned

35%

-3%

-3%
-2%
-190
-2%
-2%
-3%

12%
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Explaining individual return predictions

Household #12

Baseline probability

Property damage = A |ot

—00d shortage = A |ot

Hazard type = Multiple

Tenure status = Owner

Homeowner vacancy rate = 1.5%
Income per HH member = $50-100k
All other factors

Final probability

Emergency phase
(return within 1 month)

335%

-19%
-3%
-3%
+19%
+2%
+19
+119%

25%

Recovery phase
(return after 1 month)

35%

+119%
+2%
+2%
+19
+2%
+3%

S4%

Not returned

35%

+3%
+3%
+19
-3%
-3%
-3%
-15%

25%
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Explaining individual return predictions

Household #3234

Emergency phase
(return within 1 month)

Baseline probability 33%
Property damage = A |ot -16%
Physical mobility = A lot of difficulty -2%
Race = Other/mixed 1%
Disaster declarations = 27/ -3%
Tenure status = Renter -1%
Dwelling type = Single-tamily +1%

All other factors -

Final probability 11%

Recovery phase
(return after 1 month)

35%

+4%
-4%
-3%
-19

-19

+19
-/%

22%

Not returned

35%

+12%
+0%
+4%
+4%
+2%
-2%
+3%

/%
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Explaining aggregate return predictions

Emergency phase

Unsanitary conditions -11.2%
after disaster

Income per household

7.4%
member

Food shortage after 7 39,
disaster

Disaster declarations .6 29
(2021-2023) o

Electricity loss I4-5%
after disaster

Tenure status 4.1%

Water shortage after |- go,
disaster

Population change I2_4%
(2010-2020)

Hazard type IZ.O%

All other factors -12.3%

Tenure status

Unsanitary conditions
after disaster

Food shortage after
disaster

Income per household
member

0.0 0.2

Recovery phase

.-

7.3%

I4.2%

Dwelling type I4.0%
Electricity loss iz oo
after disaster
Hazard type 4l 3.0%
Water shortage after I2_5%
disaster
Disaster d(ezcolz;iazt(i)ozr}j 259,
All other factors 15.8%
0.4 0.0 0.2 0.4

Mean(|SHAP|), normalized

Mean(|SHAP|), normalized

Not returned

Property damage -27.1%

Unsanitary conditions -10.0%
after disaster

Tenure status

Disaster declarations 7 6%
(2021-2023) '

Food shortage after .7.4%
disaster

Income per household .6 8%
member '

Dwelling type 41%

Electricity loss < 5o,
after disaster

Hazard type IB.O%

Water shortage after > 9o

disaster
All other factors 17.9%
0.0 0.2 0.4

Mean(|SHAP|), normalized
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Understanding displacement durations

Property damage is a primary driver of displacement outcomes

Consistent with disaster literature, property damage is the numloer one predictor
of displacement duration and return outcomes

Socioeconomic factors become more important in the recovery phase

However, some socioeconomic factors require consideration to understand the
duration of household displacement, particularly tenure status and income level

Aggregate findings can obscure significant differentials at the margins

Some factors (e.g., physical immobility, large household sizes) are associated with
negative outcomes, even If they are not top factors at the aggregate level
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2018 Central Sulawesi earthquake and tsunami

Collaborators

- Tayo Opabola (UC Berkeley)

- Sukiman Nurdin (Tadulako University)
- Dicky Pelupessy (University of Indonesia)

- Aulia, Reval, Shafitri, Sifa (field researchers)

Case study topics

- Drivers of relocation decisions

- Displacement duration, severity, distance

- Conseguences of protracted displacement across
dimensions of:

- Standard of living
- Livelihooao
- Wellbeing
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2018 Central Sulawesi earthquake and tsunami

Survey features

- Retrospective longitudinal

- ~250 households, half of which
repbullt in-situ & half of which
oermanently relocated

Survey components
- Baseline characteristics

- Immediate impacts (first week)

- Transitional period (each
relocation until today)

- Policy and assistance
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Preliminary findings

Property damage is still a primary driver of displacement outcomes

Households with moderate damage or less usually found permanent housing
within a month, while households with heavy or complete damage took 2+ years

Housing recovery is not the same as household recovery

Several households that have since found permanent housing still perceive that
they are only half-recovered or less, such as those who faced income decline

The drivers of household relocation decisions vary over time

Concerns about disaster risks drove initial moves, but today these concerns are
tertiary compared to a much broader range of influencing factors
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ﬂ
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Consider submitting to our special issue in IJDRR!

Special
Issue

Redefining Disaster Risk: Equity-Centered
Approaches to Risk Assessment

International Journal of Disaster Risk Reduction

Guest Editors
Sabine Loos, Robert Soden, Jasper Verschuur, Nicole Paul, Kanako luchi

Submit your paper

https://www.editorialmanager.com/ijdrr/default.aspx

S géKDN

REDU

2023 mpact Factor
Journst Citation fgports”
Carvate Analytics, 2023

Thank you!

Nicole Paul

PhD Candidate, UCL RDR
Nnicole.paul.22@ucl.ac.uk

Nnicolepaul.io
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