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«Engineering is the art of approximation»

[Unknown Source]
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Functionality should be
measured at the system level

Aerial view of New York City during the
blackout caused by Hurricane Sandy, 2012
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Displacement
without joint

Base loads: slippage: 14mm
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Py =5kN Dsiplacement
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[Kitipornchai, Al-Bermani, & Peyrot. Journal of Structural Engineering, 1994.] Transverse deflection at A (mm)
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Multi-Scale Analysis... in Space, Time, and Probability
T

Size [m
[m] e : System
] analysis
10° "
Power transmission %ZQ;Z
104 networks 3
% - Transmission lines
103 -
Fragility
5 analysis
10 Conductor
cables .
101 Transmission towers
Structural
100 mechanics
Angle
members
101
Joint connections
102
Continuum
103 Bolt mechanics
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Topics of This Webinar

T Approximation of the
S probability space: 1
scenario selection
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Hazard Model: E.g., Hurricane Simulation

m/s m/s
5 60°Np
—>=4mis . RBD for westerly moving TCs

60°N

> [Sheng & Bocchini (2025a),
4 An improved physics-based
hurricane track model over the
North Atlantic basin with its
2 application for wind-hazard

_ RBD for easterly moving TCs

45°N

1

1
\

30°N ,
e /'J;_ > Wi ’ assessment. Journal of
R ;’f ‘ Structural Engineering,

accepted for publication.]

[Sheng & Bocchini (2025b),
Characterization and statistical
modelling of tropical cyclone
wind inflow angles for joint
wind speed and direction
hazard assessment. Wind and
Structures, accepted for
publication.]
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Hazard Model

, :
W

Scenario-based analysis Probabilistic analysis

Use one or a small set of Study a large portfolio of events
hurricane events and study affecting the region, with the goal
how the system behaves of capturing all the variability of

possible events affecting the area.

LEHIGH Center for Catastrophe Modeling and Resilience catmodeling.lehigh.edu



Hazard Scenarios —Vs — Hazard Maps
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Source: USGS

Only provide information about each individual location.
For regional analyses, we need to have correlated sets
of data.

Hazard Curve Application

Set Location Hazard Curves UHRS = AFE vs. Site Class Data Access = Help & Info

Latitude: 29.68805 Longitude: -95.18555
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Hazard Scenarios —Vs — Hazard Maps

[Karamlou and Bocchini (2016). Engineering Structures.]
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Hazard-Consistent Scenario Selection

Observation:
The IM is a 2D random field, non-
Gaussian and non-homogeneous.

Select a suite of scenario events that, in an
ensemble sense, matches the probability of
exceedance at a grid of locations.

= Matching of the marginal distribution (i.e., hazard
curve) is imposed

= Correlation is provided (hopefully) by the fact
that scenarios are real or realistic

» Is the correlation really matched?

— » If yes, are we satisfied with
g matching the correlation as a by-
| product?

——

LEHIGH Center for Catastrophe Modeling and Resilience catmodeling.lehigh.edu
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Hazard Quantization: The Idea

. Other approaches:
., = k-means clustering (e.g.,
.{::f 4 * i:,",.g § Stanford U.)
E ,..,\{u“‘:;:,, = Optimization-based
s “;"'%’:3;% probabilistic scenario
-, ,:‘f"i,,.g,*t,: (e.g., U. of Delaware)
i “"‘N'* = Closed form analysis of
R correlation (e.g., UIUC)
.e |
\ In many cases we can We also want to find
Sample space of all run only few analyses, those few cases that will
possible scenarios because of their give us the best possible
(e.g. each dot is a computational complexity representation of all
specific scenario event) scenarios.

so we try to “weight”
them to see how
representative they are

[Miranda and Bocchini (2015). Applied Mathematics and Computation.]
[Christou et al. (2016). Probabilistic Engineering Mechanics.]
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Hazard Quantization: Example Applications

Hurricanes Ecological hazards

Ko (bats/kmz)

[Ma et al. (2022). Reliability Engineering [Mursel et al. (2023). Ecology and Evolution.]
and System Safety.]

= QOther applications to stochastic mechanics, life-cycle functions,
EUBESton, SC ground motion time histories, and more.

= Hybrid Quantization (to include historical records)

= Multi-step Hazard Quantization (to have differential accuracy)

[Christou et al. (2017). Journal of Risk and
Uncertainty in Engineering Systems.]
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Hazard Model: Scenario Selection by Hazard Quantization

Reference it Q)
1072 ] ! ]
50,000 | i )
Scenario o R ] ey oA . 1
events 3 i Ve %o
&3 [ rd I V.
3 ol L ey o s BT B 0\ N
8 10 | o | /’ 3
5 [ 7 l P T =
. ,’ ’ " LY 1
Epicenter B (‘6 : .’/ ! " :', ‘.\X
& % | L 0 e M5 i Ay i ~
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2 ot FARE.
500 : ; ) N
. J 10" 10° )
Scenario R e S—— S ¥
events 1072 10" 10° 10
(a) Spectral acceleration S, (T = 0.25)[9]

[Christou et al. (2017). Journal of Risk and Uncertainty in Engineering Systems.] [Ma et al. (2022). Journal of Risk and Uncertainty in Engineering Systems.]
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Hazard Model: Scenario Selection by Hazard Quantization

Reference
1072 E T
50,000 E :
Scenario 7] -
events 2 : :
_g |
v . |
A U
;j L A
Epicenter <.5 : ’,1'.! A
B ol e
= £ 107
o
2 .
2
& 109k
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E k
E 1%
< 107 £ 10"
500 :
Scenario sl s
109 s
events 1072
(b) Spectral acceleration S, (T = 1.05)|g]

[Christou et al. (2017). Journal of Risk and Uncertainty in Engineering Systems.] [Ma et al. (2022). Journal of Risk and Uncertainty in Engineering Systems.]
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Hazard Model: Scenario Selection by Hazard Quantization

8
50,000 12k Sa(r=02s) - |
Scenario ~ —
2 445t g
events ::c, Mean
= 1.1 0.82 1.00 1.18 :
=
2 1.05
o
Fault ruptures s
'&’ 0.95} Standard deviation ]
8 i 0.006 0.007 0.011 ]
2 09
=
500 < 0.85f E
- 08+  —— .
Scenario l , ,
events Nug = 500 Nyg = 250 Nyo = 150

(@)

[Christou et al. (2017). Journal of Risk and Uncertainty in Engineering Systems.] [Ma et al. (2022). Journal of Risk and Uncertainty in Engineering Systems.]
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Hazard Model: Scenario Selection by Hazard Quantization

-2
107% E —— ey e — ey — -
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50,000
Scenario
events

Entire sample set

Loss exceedance rate (1/year)

10° F \ ;

10 F -
Scenario ,

10- " " edoa aa sl ™ 2 ko aaaal M 2 Adoaa sal ™ 2 Aeld AL

Expected loss (Million US$)

[Christou et al. (2017). Journal of Risk and Uncertainty in Engineering Systems.] [Ma et al. (2022). Journal of Risk and Uncertainty in Engineering Systems.]
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Hazard Model: Scenario Selection by Hazard Quantization

Application to joint wind velocity and storm depth

oungstown
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[Ma et al., Manuscript in preparation.]
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Hazard Model: Scenario Selection by Hazard Quantization

Application to joint wind velocity and storm depth (13,606 = 1,000 scenarios)

Traditional Hazard Quantization
‘ ¥ oungstown |
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[Ma et al., Manuscript in preparation.]
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Hazard Model: Scenario Selection by Hazard Quantization
Application to joint wind velocity and storm depth (13,606 = 1,000 scenarios)
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Topics of This Webinar

Yaungsiown

ey
AL

\‘\ N
W
Nt \\\\\l\\\“ A

Approximation of the | i

T

) structural behavior:
fragility models

o\

% LEHIGH Center for Catastrophe Modeling and Resilience catmodeling.lehigh.edu

UNI1VERSITY



Fragility Curves

Conditional probability of reaching or
exceeding a damage level given an IM

Fragility = P[C < D|IM = im|

yd i :
£ 4 T Typically presented
PROBABILITY 5 /A VA with the analytical
of reaching or exceeding = / 7 N
each of the damage levels .."é / — Slight | | form of a
2 "~ Moderate} cumulative
S -+ — Extensive . ) )
3 / — - Complete[™] distribution
o / A /' g .
< £ TIA e function
2 B AP i | —_— 4
Intensity Leasure (IM)

1

Hazard Scenario
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Bolted Connections

Q% Experimental
P results
& 9
‘Q 6’0

. 2

100 -

I 80 4 o __.
60 A -
40 1 Tests
mOd el 20 - - l'B;]I’(i)Cc:(e(leIements
0 T T
Analytical

model /—]} -
A

OpenSees - N

0 0.5 1 1.5 2
Deformation (cm)

Foroe A\ Tension

Phases under cycling loading:
= Before slip

= Slippage

= Bearing loading

= Bearing stick

= Bearing slip

+ damage accumulation

f\f\f

e I eme nt [Ma & Bocchini, Journal of Engineering Mechanics, 2019]
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Tower Fragility: Wind Loads

Group 1

Group H

GroupG & O

Group F & N

Group E & M

GroupD & L

Group C & K

Group B & J

Group A

Panel 5-2

Panel 5-1

Panel 4-2

Panel 4-1

Panel 3-2

Panel 3-1

Panel 2-3

Panel 2-2

Panel 2-1

Panel 1

The 10th point —»
The 9th point —»

The 8th point —»

The 7th point —»
The 6th point ——»

The 5th point ——»

The 4th point —»

The 3rd point ——»

The 2nd point —»

The 1st point —»

[Ma, Khazaali & Bocchini. Engineering Structures (242) 2021.]
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Wind data repository

Comprehensive repository of
spatially and temporally
correlated wind velocity
samples.

[Khazaali, Christou, & Bocchini.
Journal of Structural
Engineering, 2022.]
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Tower Fragility: Loads from Conductor Cables

Naive approach

Wind spectrum

Q " TTSRM (1004
L _components) _;
- ‘ | Wind fluctuations
/ ( " Finite element 'i Load transferred by
. e ' _model | conductor cables?
I a : 1\ Cable element
I S — L___analysis____;
’ : Load on the tower

[Ma, Khazaali & Bocchini. Engineering Structures (242) 2021.]
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Conductor Cable Dynamics

The highly nonlinear behavior of the cables

W e '!‘"”»—-f . . . . .
2 T requires nonlinear time-history analysis
TN T l (repeated ~10° millions times)
Y e ; ; do’ ! V:VVV‘NY'M""_—_.;A‘d"\‘. . ° ?
Wy o el L o e & Doesn’t it?
Ny AI}P“ (\} J;JE‘?IQ‘ '.'~ I\f'év' N2 o
12, X l‘.!r‘p\» E
£
E
3
State of the conductor ;
4 under static mean wind c
=

X ‘ 300 300
Plane of the conductor 4W 200
i i i 100

Original state of the conductor
under static mean wind Distance (m) 500 o Time(s)

= g

Plane of the conductor

S Origna stete [Ma, Bocchini, & Christou. Structural Safety, 2020.]
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Conductor Cable Dynamics

14 I ,

12l Stiffness at peak
response

10 - \ -

Mean wind state

Force (kN)

»

4 | Stiffness at low
response

Stiffness at mean
wind state

Displacement (m)

State of the conductor
z under static mean wind

/

/

Plane of the conductor
under static mean wind

Original state of the conductor

o

Plane of the conductor
in its original state

[Ma, Bocchini, & Christou. Structural Safety, 2020.]
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Tower Fragility: Loads from Conductor Cables

—————————

1

Naive approach

Wind spectrum

Q " TTSRM (1001

components)

' Dynamic
! analysis

Load on the tower

Proposed Method

Wind spectrum

SRM (21
components)

Load on the tower

[Ma, Khazaali & Bocchini. Engineering Structures (242) 2021.]
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[Loads from Conductor Cables

[Ma, Khazaali & Bocchini. Engineering

Structures (242) 2021.]

Transverse force (kN)

o a4 0 N v w0 A
T v T ¥

o

- Proposed method
Full model

15 20 25 30 35
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40
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Conductor Cable Fragility

Extra benefit: the modal superposition method allows us to compute the spectrum of the response
analytically, and to formulate the problem as a first-passage problem, which can be solved in closed form.

Conductor Tern Conductor Mallard

Log probability _s

Log probability
of failure

of failure

70

Maximum sustained ©° Maximum sustained 0

wind speed (m/s) 50 % wind speed (m/s) 50 - AY
40\ __\ v o 60 70 80 90 40 ""a.,rﬂ,,,_.,ﬂv/w"’*-”’fs’; s 70 80 90
\0 10 20 30 40 .0 10 20 30 40
Angle of yaw (Degrees)

Angle of yaw (Degrees)

[Ma, Bocchini, & Christou. Structural Safety, 2020.]
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Tower Fragility: Bolted Connections

Eccentricity Rotational stiffens Joint slippage

Diagonal
member

2 2 0 P
. " - |
b I [ T —————— ,,-,-,-,-:,-,-,-::,-}:-,-,-,-,-,-,-,-,-,- @ ‘b
___________ Redundant " Diagonal k; Shipping stage
Z - ¥ member
Leg Member
Complex model Simple model
Zero-length element Zero-length element
Beam-column element
l l @ Beam-column element
Rigid link ® ®
Rigid link
12 hours for a 2-minute dynamic analysis 5 minutes for a 2-minute dynamic analysis

[Ma, Khazaali & Bocchini. Component-based fragility analysis of transmission towers subjected to hurricane wind
load. Engineering Structures (242) 2021.]
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Tower Fragility: Bolted Connections
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[Ma, Khazaali & Bocchini. Component-based fragility analysis of transmission E oo e s
N . . . . < 50 60 70 80 90 100 110 120
towers subjected to hurricane wind load. Engineering Structures (242) 2021.] - _ A |
g emand of a main member at Panel 3 based on the simple model (kN)
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Tower Fragility: Progressive Collapse

/

Panel 3-2 —
Panel 3-1 —-::7"
. N
Member A
Vulnerable ] Member B
Panel 2-3
members
Member C
Panel 2-2 —
Panel 2-1

[Ma, Khazaali & Bocchini. Component-based fragility analysis of transmission towers subjected to hurricane wind load.
Engineering Structures (242) 2021.]
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Hazard Model: Hurricane Simulation

m/s

60°N
. RBD for easterly moving TCs

[Sheng & Bocchini, An
improved physics-based
hurricane track model over
North Atlantic basin with its
application for wind hazard
assessment, under review.]

[Sheng & Bocchini,
Characterization and statistical
modelling of tropical cyclone
wind inflow angles for joint
wind and direction hazard
assessment, under review.]
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Hazard Model: Example Scenario
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System Model

40.8°

Power plants and substations

1% I 500 kV
Al @ Power plants N 230 kv
40.9° 5 . [ 138 kv
40.7° F l @® 500/230 kV Substations C]115kv
40.8° . 69 kV
X @ 230/138 kV Substations 11%
40.7° .
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L 406 ) N\,
i E > ® 69/12 kV Substations
£ 405 K
gl Qo Transmission lines
403 500 kV 14% 60%
402 — 230 kV
404° F
401° —— 138kV
40.0° —— 115kV
— 69kV

Power Network Statistics
— 5,999 transmission towers
— 20,862 conductor segments
— 115 transmission lines
— 8 power plants
— 82 substations
— 313,803 households

[Ma, Christou, Bocchini. Reliability Engineering & System Safety, 2022.]
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System Analysis

Global analysis
framework

Important note:
decouple
uncertainty in
capacity and
demand

Structural analysis of
components

Power system data collection

A4

;

Structural components
geographical data collection

Pool of component fragilities‘
based on different capacities

- -
v <&

ACOPF-based power network
performance analysis

V4

Components time-varying
intensity measure

Random field-based comp.
performance simulation

=

Simulation of power
network performance

[Ma, Christou, Bocchini, Reliability Engineering & System Safety, 2022]
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Visualization and evaluation of components
and system performance
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Hazard Model: Example Scenario

Wind speed field at t;

Wind speed field at t,
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Hazard Model: Example Scenario

Wind direction field at t; Wind direction field at t,
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System Reliability
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System Functionality
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System Functionality
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System Recovery

Algorithm

1. Remove failed lines
according to structural
failure model

2. Determine sub-grids

3. Check generator in sub-grids
and perform ACOPF

4. Load shedding

5. Compute unmet demand for
the network

LEHIGH Center for Catastrophe Modeling and Resilience catmodeling.lehigh.edu

UNI1VERSITY



System Recovery o
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System Recovery

Legend

®  Sub-grid node

Isolated node

Failed structure

X ®

Transmission line

20

30

40

Unmet demand (MW)

50

60 1 L 1 L 1 1 '
-100 0 100 200 300 400 500 600 700

Time (hours)

LEHIGH Center for Catastrophe Modeling and Resilience catmodeling.lehigh.edu

UNI1VERSITY



System Recovery
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System Recovery
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System Recovery
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System Recovery
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System Recovery
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System Recovery

Legend
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System Recovery
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System Recovery

Unmet demand (MW)

0 I N L8 1 | 1} | LN T |
| | e i Iu% O —
:j_ [,'j1 1"I {
20 + [T - i |
.
40 | i J I ]
60 F  [ERREATET T .
s ,;_’J— ]
8o  ELl -
S -
100 Il e .
—T |
120 | | |
140 | | :
160 1S 4 § 1 a2 | ¥ { )

100 0 100 200 300 400 500 600 700 800 900 100
Time (hours)

LEHIGH Center for Catastrophe Modeling and Resilience

UNI1VERSITY

0.02

0.018

0.016

0.014

S
o
—
N

0.01

0.008

Probability density

0.006

0.004

0.002

20 40 60 80 100

Unmet demand (MW)

120

140

160

catmodeling.lehigh.edu




Conclusions

To understand catastrophes, we
need models that are complex
enough to capture all the
important features, but simple
enough to be explainable.
Finding the right balance of
complexity and simplicity through
surrogation is a technical
challenge, and also an art.

The proper study of natural
disasters is a highly
interdisciplinary task, which
requires teams of people with
different backgrounds.
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An Academia — Industry Consortium

CERCat
LEHIGH

UNIVERSITY

Consortium for
Enhancing Resilience
and Catastrophe Modeling

RICE

Lead Site Site WASHINGTON STATE
g UNIVERSITY
A 4

CoLuMBIA UUNIVERSITY
IN THE CITY OF NEW YORK

FﬁU MISSOURI

FLORIDA S&I‘

ATLANTIC
UNIVERSITY
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CERCat Faculty

= 18 Faculty members
= 2 sites, 6 total institutions
=  Spanning many departments, schools, colleges,
and areas of science such as:
= Civil Engineering
=  Statistics
= Atmospheric Science & Climate Change
= Urban & Regional Planning
= Hydrology
= Remote Sensing & Computer Vision
= Environmental Engineering
= Mathematics
= Structural Engineering
= Sociology
= Data Science, ML, Al
= Water Resources Engineering
= Public Policy
= Computer Science
= Population Health

LEHIGH Center for Catastrophe Modeling and Resilience catmodeling.lehigh.edu
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CERCat Members

Software 'J CatModeling
companies v/ firms

Reinsurance M
companies II—FL."?'—HE Large (engineering)

e consulting firms
Banks and

I

Insurance companies

Mortgage (ﬁ\ Large Asset
Companies Owners
[ e ~
Climate data Federal agencies Professional
companies and labs societies
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CERCat Value Proposition

Single point of access to top talent and world-class research

= 18 renowned faculty members in core CatModeling disciplines
and complementary areas.

= QOver 100 bright students per year at the Bachelor, Master, and
Doctoral levels.

=  Ability to mentor and train students and create a pipeline.

Ability to steer research topics, early access to research and IP
= High return on investments with jointly funded projects.
=  University contributions lower overhead.

Professional networking opportunities in the private sector,

public sector, and academia

= Ecosystem of companies in complementary fields.

= Recurring events to engage with collaborators, clients,
vendors, regulators, etc.

=  Opportunities for continuous education, professional
development, and initial personnel training

LEHIGH Center for Catastrophe Modeling and Resilience catmodeling.lehigh.edu
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Bocchini Research Gr_oup @ Lehlgh

Main topics

= Computational
simulation

= Probabilistic

\.\\\.\\ \ruk & 5 = modeling applied to

- civil engineering

= Infrastructure and
community
resilience

= (Catastrophe
modeling

Members (13 scholars)
= ] Research Scientist
= ] Postdocs
= 6 PhD students
= 2 Master student
= 2undergraduates

. and 1 advisor
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Thanks to Our Host
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