Assessing the impact of dry granular flows on structures

Maria Kontoe, PhD Student

Tiziana Rossetto, Professor

Susana Lopez-Querol, Associate Professor

UCL

Landslides

Catastrophic impact on the affected communities and infrastructure

1900-2014 EM-DAT: Casualties: 65000 Loss: 8.7 billion USD

How to assess the landslide impact on structures?

- Empirical Method
- Expert Judgement
- Analytical Method

Introduction

Flow type landslides: Analytical Methods

□ Sophisticated Non-Linear Models (e.g. FEM, MPM)

□ Structural analysis with simplified load patterns

Load pattern adequate to capture SSI with passable obstacles (buildings)?

Introduction

Alternative Load Patterns

Experiments on passable obstacles

(Cui et al. 2015)

(Suda et al. 2010)

Simplified Structural Analysis Framework

- Load pattern definition on passable obstacles
- Static Approach

Normal Force, $F_i(t)$ Measured at different levels along the height of the obstacle

Shear Force, *S*(*t*) *Measured at the storey level*

- Seismic actions
- Landslide Loads

Modelling Assumptions & Validation

- □ Moriguchi et al. (2009) experiments
- MPM approach integrated in Anura3D
- □ Material Properties as per Cuomo et al. (2020)
- □ Sensitivity Analysis on Mesh Size & Number Material Points

MPM Simulation

UCL

Modelling Assumptions & Validation

- □ Moriguchi et al. (2009) experiments
- MPM approach integrated in Anura3D
- □ Material Properties as per Cuomo et al. (2020)
- Sensitivity Analysis on Mesh Size & Material Points

MPM Simulation

Geometric scaling

Variable	Symbol	Factor	lai et al. (2005)
Length (m)	l^*, h^*, w^*	λ	μ
Density (kg/m3)	ρ*	1	$\mu_{ ho}$
Mass (kg)	<i>m</i> *	λ^3	-
Displacement (m)	x *	λ	μμε
Pressure (N/m²)	p *	λ	$\mu\mu_{ ho}$
Impdcoudevsin	nilariŧy	λ^3	$\mu^{3}\mu_{ ho}$
Flow Height (m)	h_f^*	λ	-
Strain	ε*	1	μ_{ε}
Velocity (m/s)	v *	$\sqrt{\lambda}$	$\sqrt{\mu\mu_{\varepsilon}}$
Time (s)	t *	$\sqrt{\lambda}$	$\sqrt{\mu\mu_{arepsilon}}$
Stiffness (N/m)	<i>K</i> *	λ	$\mu\mu_{ ho}/\mu_{ m e}$
Acceleration (m/s)	<i>a</i> *	1	1

Normal Impact Force

□ Passable obstacle (b/w=0.5)

□ Full-width obstacle (b/w=1)

Normal Force Distribution

Soil-Structure Interaction

Flow response

Soil-Structure Interaction

Shear Force

□ Passable obstacle (b/w=0.5)

Total peak shear force: 60kN (20% of normal force)

Significant load to be considered in the assessment framework

Soil-Structure Interaction

h _{obstacle}	b/w	Legend
3m	0.5	SLφ_0.5
10m	0.5	SH φ_0.5
3m	0.25	SLφ_0.25
10m	0.25	SH φ_0.25

Dynamic vs Static Analysis

Push Over vs Static analysis under soil forces

Post-capping response is not captured Load-controlled analysis method

Increased stiffness and strength of structure when subject to soil forces

Progressive loading from the base of the structure upwards

Conclusions

Improve Resilience in Landslide prone regions

THANK YOU FOR YOUR INTEREST!

O University College London, Gower Street London, WC1E 6BT

