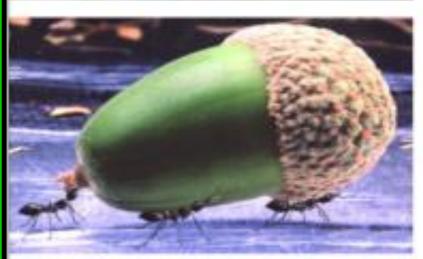
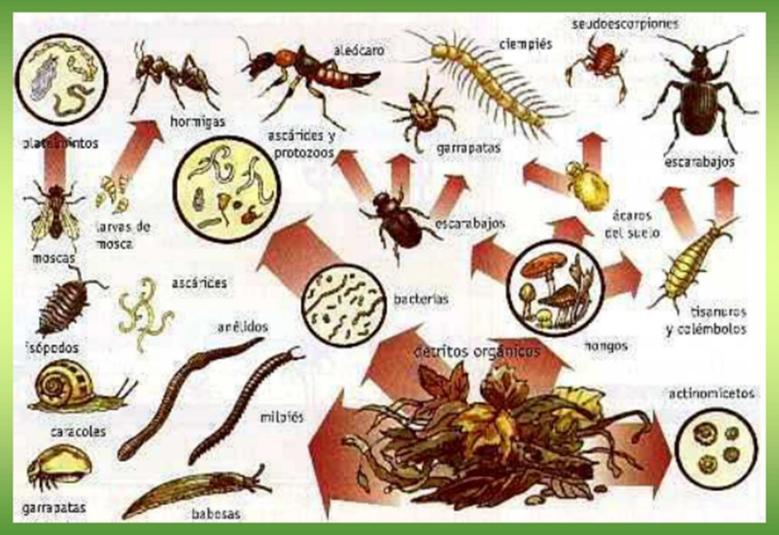


Su origen... la roca madre

- El suelo es el sistema complejo que se forma superficialmente, inicialmente por la alteración física y química de las rocas, así como por la influencia de los seres vivos, desarrollando una estructura en niveles superpuestos, el perfil, y una composición química y biológica definidas.
- Gracias al soporte que constituye el suelo es posible la reproducción de los recursos naturales.

Los microorganismos del suelo son decisivos para las nuevas recolonizaciones por su especificidad con las especies vegetales





El suelo reserva de Biodiversidad

Alberga el grueso de la masa viviente del planeta.

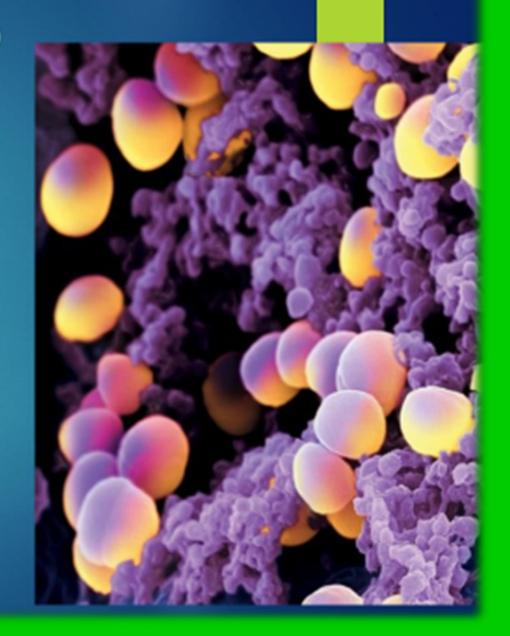
Nutrientes en la MO

■ Cada 1% de materia orgánica en 20 cm de suelo con densidad de 1.1 ton/m³

- ► 12000 13000 kg/ha de C
- > 1000 -1200 kg/ha de N
- ≥90 -120 kg/ha de P
- ≥90 -120 kg/ha de S

La materia organica es alimento para los Micro-organismos

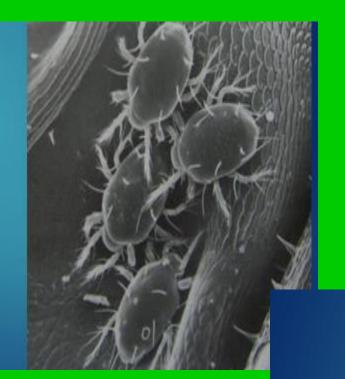
Lo que exhuda es HUMUS = almacenaje estable de nutrientes orgánicos


ORGANISMOS DEL SUELO

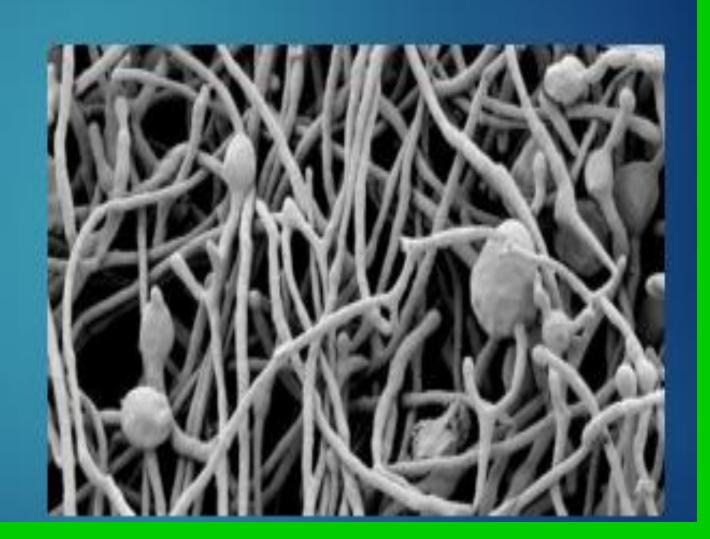
- Un gramo de suelo del horizonte A puede llegar a tener (Anrango, 2009):
- 2500 millones de bacterias.
- 500 mil hongos.
- 50 mil algas.
- 30 mil protozoos.

ORGANISMOS DEL SUELO

- Al añadir al suelo materiales frescos (estiércol y residuos vegetales):
- Aumenta el número de organismos.
- Se reduce la disponibilidad de nutrientes (Inmobilización).
- Se liberan nutrientes (mineralización).
- La población de organismos se reduce (se estabiliza) a su nivel normal a medida que progresa la descomposición.


MACRO-ORGANISMO

ACAROS



ESCAMAS

MICRO-ORGANISMOS HONGOS

LAS CÉLULAS SE UNEN EN HIFAS, LAS CUALES UNEN PARTÍCULAS DE SUELO FORMANDO ESTRUCTURA. DESCOMPONEN LA LIGNINA Y LA CELULOSA

Micorrizas

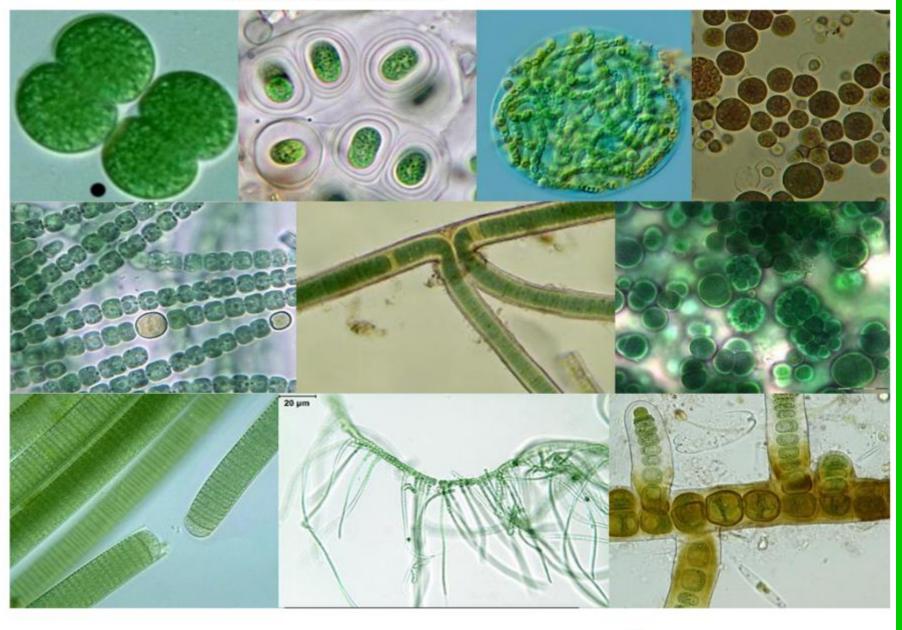
- Hongos de especies específicas asociados por simbiosis a la raíz de la planta.
- Endo y ecto-micorrizas, dependiendo si infectan o no el interior de la célula de la hospedera.
- Las hifas del hongo incrementan el volumen de suelo explorado, dándole a la raíz más extensión para acceder a agua y nutrientes.
- El hongo aporta agua y P a la planta.
- La planta proporciona material nutritivo al hongo.

Nódulos de Rizobium en Soya y Trébol

ACTINOMYCETES

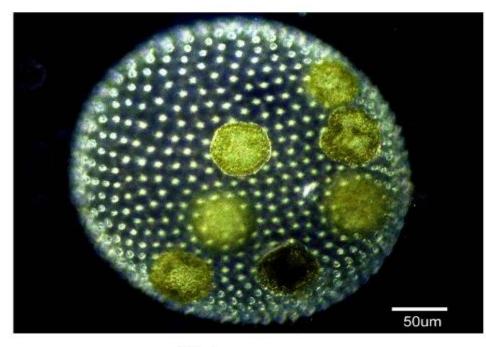
- Gram positivas
- Filamentosas
- Aeróbicas o anaeróbicas
- Forman conidios

Figura: Streptomyces griseus


CIANOBACTERIAS

Uni o pluricelulares (filamentosos)

Pared celular similar a Gram -


Baxterias fotoautótrofas oxigénicas (clorofila a, ficocianina y ficobilina)

Liberan toxinas al agua como: geosmina y metil-sioborneol

Ejemplos de la gran biodiversidad morfológica de las Cianobacterias


ALGAS

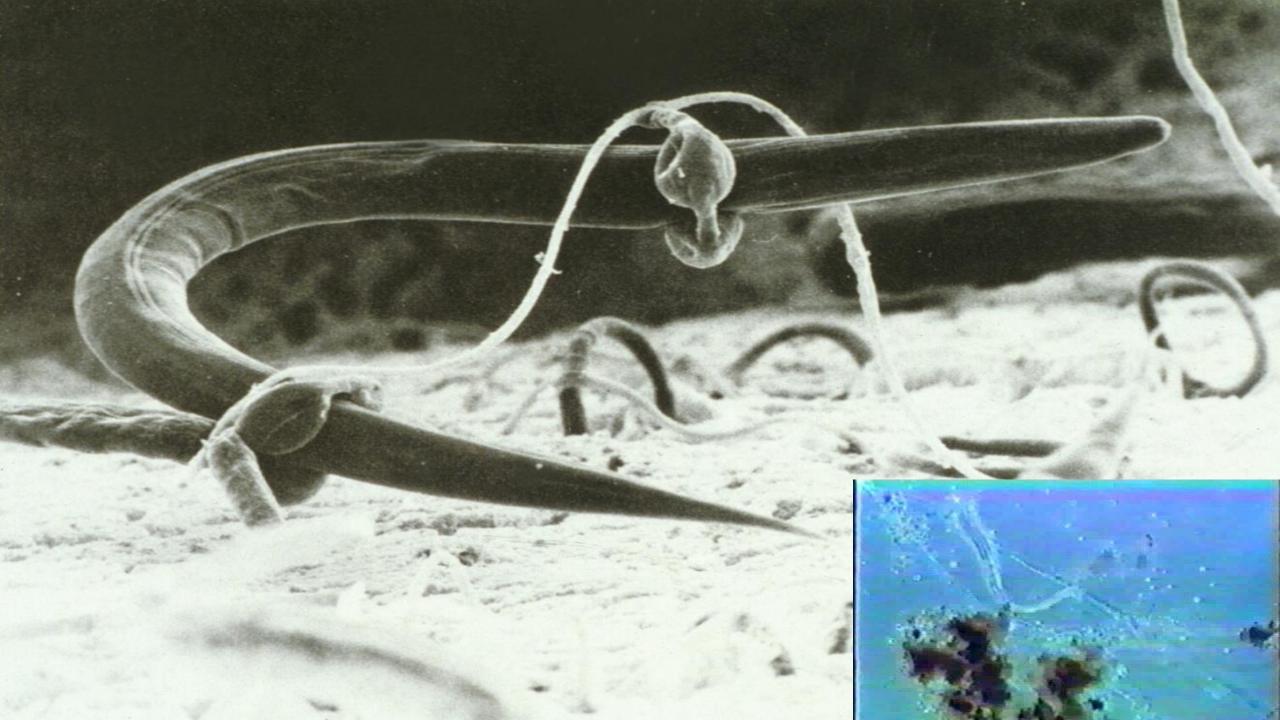
Volvox

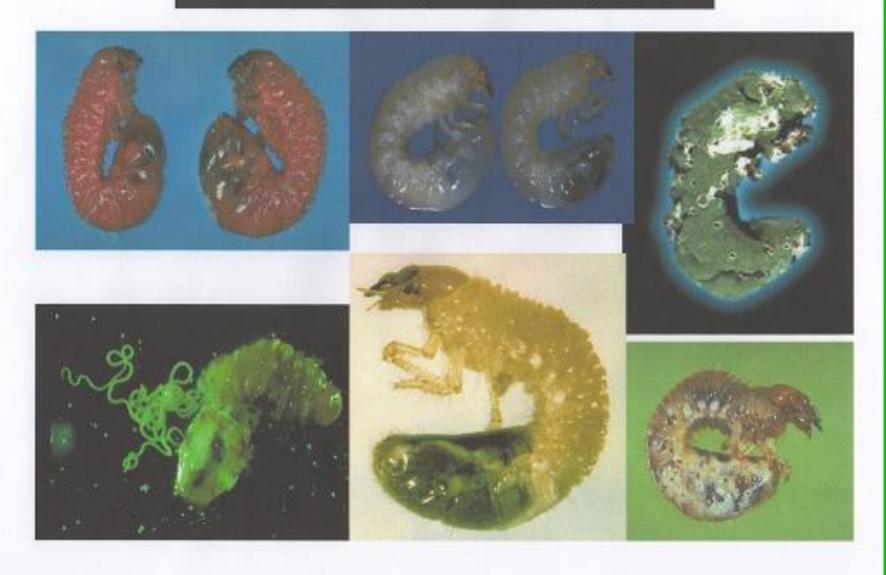
Micrasterias

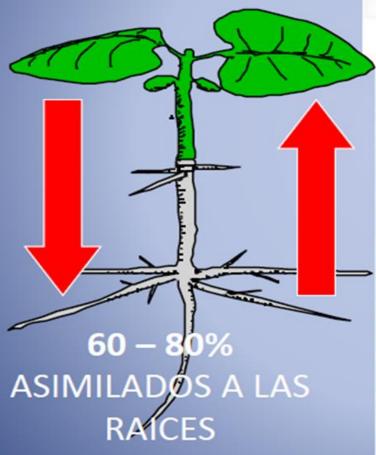
Scenedesmus

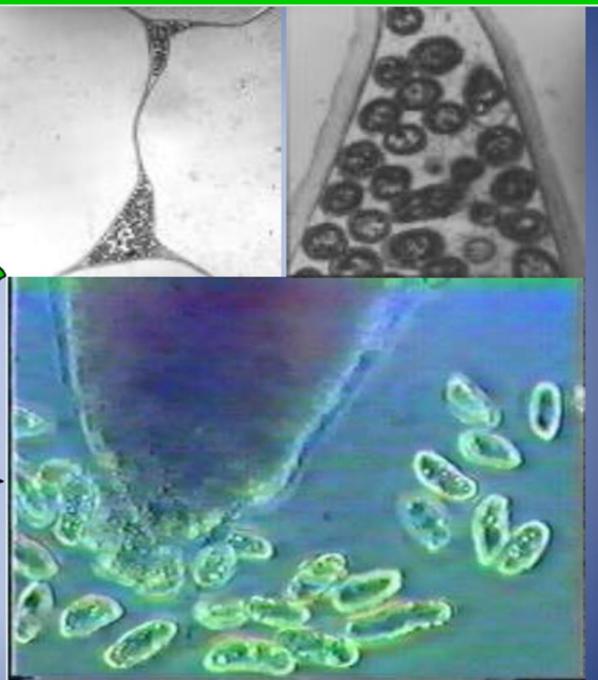
Rodophyta: Gracilaria

FIJACION SIMBIOTICA DE N EN LEGUMINOSAS


NEMATODO


Organismos parasíticos





Larvas infectadas por entomopatogenos

Encima y abajo son conectados

El suelo mantiene las plagas del suelo bajo control: filtro biológico

IMPORTANCIA DE LA BIOTA EN EL SUELO

Los organismos vivos del suelo mejoran:

- La entrada y el almacenamiento de agua
- ▶La resistencia a la erosión
- La nutrición de las plantas
- La descomposición de la materia orgánica

La biodiversidad del suelo, el tamaño de las poblaciones de organismos en él y su actividad dependen de:

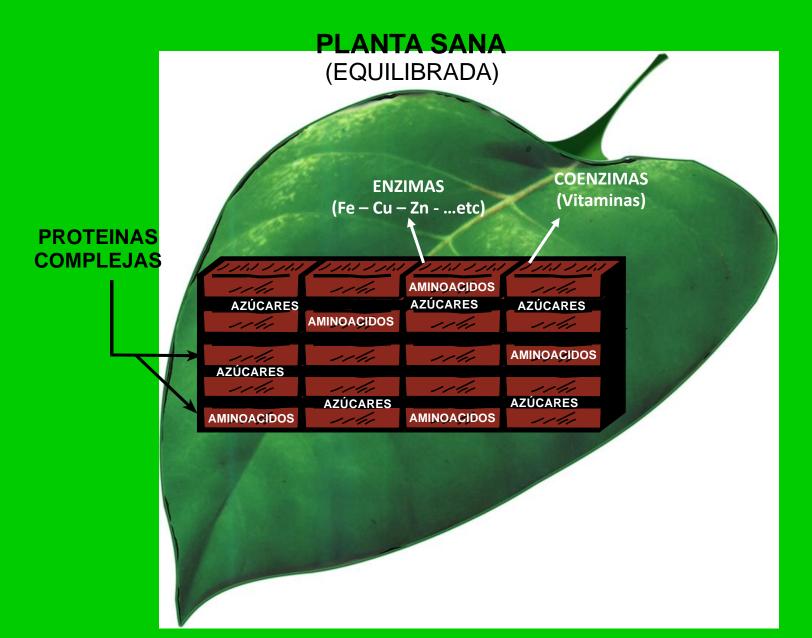
- ▶Prácticas de manejo como laboreo, controles fitosanitarios y manejo de residuos de cosecha
- ≻La cobertura

FUACION SIMBIOTICA DE N

- Bacterias y plantas
- Muy específicas
- Eficiente
- En leguminosas con Rhizobium y Bradyrhizobium
- 50 250 kg N ha-1 año-1
- No leguminosas con Frankia
- Azolla con Anabaena
- Líquenes

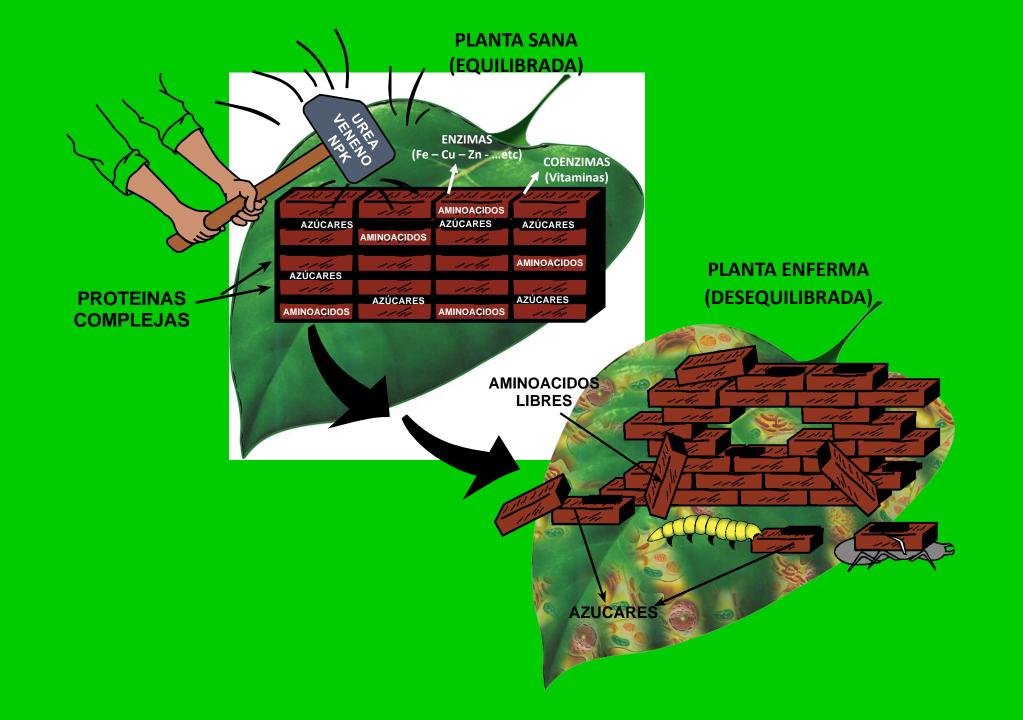
EL SUELO, UN ORGANISMO VIVO

En las quemas se pierde


- 💠95 % del Nitrógeno.
- 51 % del Fósforo.
- *44 % del Potasio.
- ❖55% del Calcio.
- 42% del Magnesio.
- ◆59% del Azufre.
- *Además de afectar la calidad de la radiación solar que incide sobre los cultivos.

TEORIA DE LA TROFOBIOSIS

PLANTAS ENFERMAS POR EL USO DE :



TEORIA DE LA TROFOBIOSISFrancis Chabousso

TEORIA DE LA TROFOBIOSIS LA CALIDAD NUTRICIONAL DE LA PLANTA REPERCUTE EN:

LALUNA

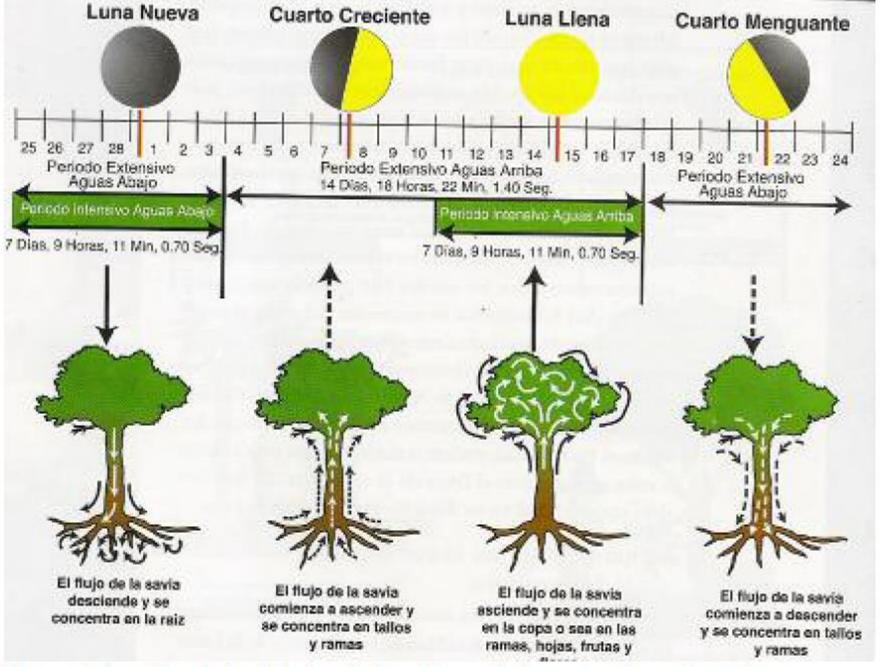


Figura 8. Detalles de la dinámica de la savia: períodos extensivos e intensivos.

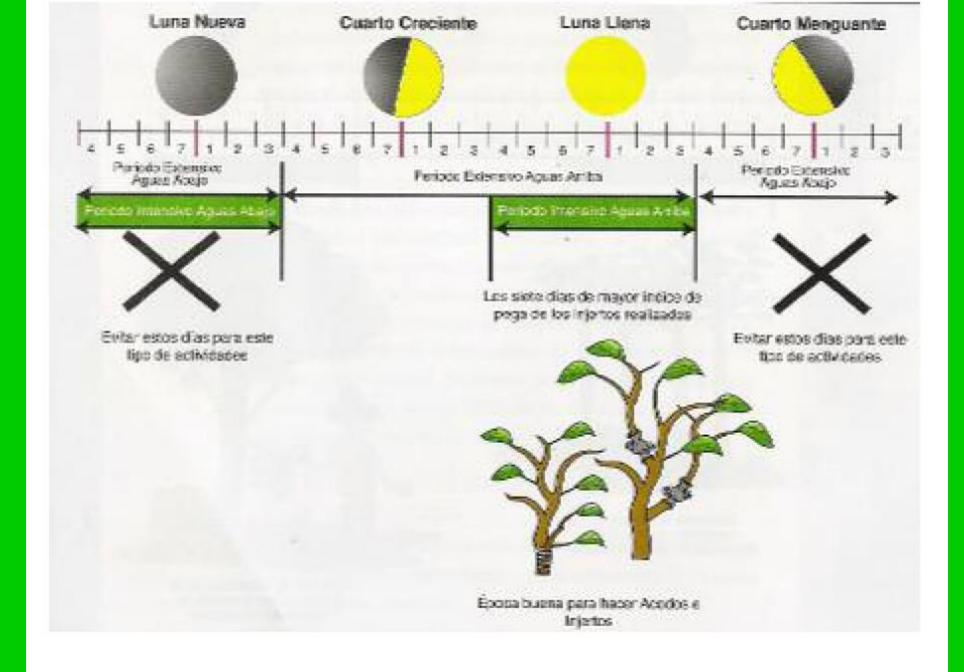
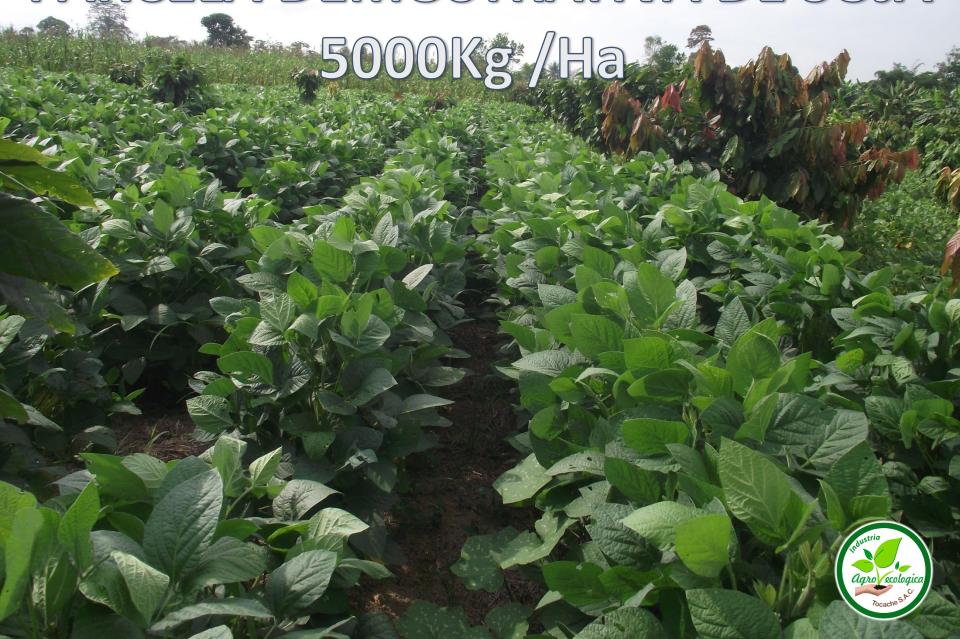


Figura 10. Injertos y acodos.

RECUPERACION DE SUELOS DEGRADADOS CON LEGUMINOZAS



PARCELA DEMOSTRATIVA DE SOJA

FRIJOL DE PALO

ANALISIS DE SUELOS: CARACTERIZACION + MICROELEMENTOS + AZUFRE Y SILICIO

UNIVERSIDAD NACIONAL AGRARIA LA MOLINA

FACULTAD DE AGRONOMIA - DEPARTAMENTO DE SUELOS

ANALISIS DE SUELOS : CARACTERIZACION

Solicitante : FERREOL OLIVERA NAPURI

Departamento : Distrito :

Referencia

: SAN MARTIN

: POLVORA

: H.R. 40458-048C-13

Provincia: TOCACHE

Predio : SECTOR NUEVO HORIZONTE

Fecha : 03/06/13

	Número de Muestra		C.E.					Análisis Mecánico C		Clase	CIC	IC Cationes Cambiables			Suma	Suma	%			
Lab	Claves	pН	(1:1)	CaCO ₃	M.O.	Р	K	Arena	Limo	Arcilla	Textural		Ca ⁺²	Mg ⁺²	K⁺	Na⁺	Al ⁺³ + H ⁺	de	de	Sat. De
	9	(1:1)	dS/m	%	%	ppm	ppm	%	%	%				meq	/100g	Manager and		Cationes	Bases	Bases
7648	M-1, Prof. 0-30 Cm.	4.32	0.09	0.00	2.05	2.3	49	45	38	17	Fr.	10.40	6.05	0.82	0.21	0.11	0.70	7.89	7.19	69
7649	M-2, Prof. 0-30 Cm.	4.51	0.07	0.00	1.79	1.4	51	45	36	19	Fr.	8.32	4.57	0.77	0.21	0.13	0.70	6.37	5.67	68
7650	M-3, Prof. 0-30 Cm.	4.58	0.08	0.00	2.47	5.0	97	69	24	7	Fr.A.	11.20	5.61	0.57	0.33	0.08	1.00	7.59	6.59	59

Fact.: 24322

A = Arena ; A.Fr. = Arena Franca ; Fr.A. = Franco Arenoso ; Fr. = Franco Franco Limoso ; L = Limoso ; Fr.Ar.A. = Franco Arcillo Arenoso ; Fr.Ar. = Franco Arcilloso; Fr.Ar.L. = Franco Arcillo Limoso ; Ar.A. = Arcillo Arenoso ; Ar.L. = Arcillo Limoso ; Ar. = Arcillo Limoso ; Ar.A. = Arcillo Limoso

	Número de Muestra							
Lab.	Claves	В	Cu	Fe	Mn	Zn		S
		ppm	ppm	ppm	ppm	ppm		ppm
7648	M-1, Prof. 0-30 Cm.	0.0	1.45	180.65	30.85	1.75		0.7
7649	M-2, Prof. 0-30 Cm.	0.2	1.50	156.30	10.90	1.60		11.3
7650	M-3, Prof. 0-30 Cm.	0.2	2.60	228.50	10.90	1.80	Agra	9.5

Jefe del Laboratorio

ANALISIS DE SUELOS - CARACTERIZACION

Distrito: POLVORA Provincia: TOCACHE FECHA: SETIEMBRE 2009

	Numero de Muestra	В	Cu	Fe	Mn	Zn	S- SO ₄
Lab	Campo	ppm	ppm	ppm	ppm	ppm	ppm
7975	HERMOGENES ARAUJO MARTINEZ	0.00	0.20	120.60	3.00	2.20	0.00
7970	GERMAN TRUJILLO ARTEAGA	0.00	0.70	87.50	5.50	3.00	0.30
7967	SANTOS SILVESTRE MARTINEZ CRUZADO	0.00	0.20	46.30	5.30	1.60	0.00
7947	CEVERINO TRUJILLO ARTEAGA	0.00	2.50	103.80	8.50	3.60	0.00
7959	ELEUTERIO LECCA VILLAREAL	0.00	0.20	113.80	7.40	1.40	0.00
7951	RUMALDO MENDOZA HERACLIO	0.00	0.20	144.60	6.60	1.00	3.10
7972	SINECIO TIMOTEO RUMALDO MENDOZA	0.00	0.80	128.30	5.60	3.00	6.30
7952	JOSE LUIS RAMIREZ BULNES	0.00	0.20	90.70	3.10	1.50	13.20
7968	PEDRO TERCERO TAPULLIMA TUANAMA	0.00	0.20	44.70	2.30	0.30	12.90
7965	ELMER EDINSON SMITH ZAMBRANO	0.00	0.50	56.30	5.90	2.70	0.00
7948	MANUEL ISMAEL LOPEZ SALCEDO	0.00	0.50	83.10	2.50	0.90	0.00
7955	ARCADIO MEDINA ARTEAGA	0.00	0.20	102.70	2.70	0.90	0.00

7961	JULIAN QUISPE ALVAREZ	0.00	0.80	88.00	2.30	2.30	0.00
7973	ARCENIO VASQUEZ ROJAS	0.00	0.50	77.70	3.80	1.60	0.00
7950	CARLOS JOSE SIERRA RIVERA	0.00	0.60	102.40	11.40	2.50	0.00
7962	TELEYONEL FIGUEROA ALVINO	0.00	0.60	67.50	4.40	2.80	0.00
7960	KLEVER ADOLFO SIERRA RIVERA	0.00	0.70	71.70	10.70	2.80	11.20
7956	MELECIO GARAY JUSTO	0.00	0.60	102.40	2.80	3.20	0.00
7953	APARICIO TRUJILLO DOMINGUEZ	0.00	0.70	68.60	4.60	2.90	3.70
5550055	WALTER HUGO PALACIOS COLCHADO	0.00	0.60	61.80	2.20	2.40	0.00
7966	EDIL SANDOVAL AREVALO	0.00	1.20	51.60	7.40	2.90	17.50
7963	SANTIAGO MUÑOZ GARFIAS	0.00	0.20	84.90	2.00	2.90	0.00
7954	JORGE LUIS TRUJILLO DOMINGUEZ	0.00	1.50	65.40	6.00	3.10	40.30
7964	ESMITH EPIFANIO MARIÑOS SARMIENTO	0.00	0.20	80.20	2.20	4.20	0.00
7969	SANTIAGO MUÑOZ GARFIAS	0.00	0.60	105.60	2.60	2.40	4.80
7958	SANTIAGO MUÑOZ GARFIAS	0.00	0.60	65.20	0.80	2.30	27.90
7971	RAUL BELAUNDE LAPA LERMO	0.00	0.80	58.80	3.40	1.80	0.00
7949	MARINO DIONICIO ROQUE QUEZADA	0.00	1.10	83.70	1.10	1.50	0.00

ELABORACION DE ABONOS ORGANICOS SOLIDOS

INSUMOS

- GALLINAZA
- ESTIERCOL DE VACUNOS, OVINOS, CABRAS, CABALLOS, CUY Y PORCINOS
- TEIRRA ARCILLOSA
- TIERRA AGRICOLA
- CENIZAS DE CARBON DE LEÑA O DE CASCARILLA DE ARROZ
- POLVILLO DE ARROZ
- CARBON DE LEÑA
- RASTROJOS DE COSECHAS
- MICROORGANISMOS DE MONTAÑAS SOLIDOS Y LIQUIDOS
- HARINA DE ROCA
- MELAZA
- LEVADURA DE PAN
- AGUA PURA NO CLORADA

FERTILIDAD

CAPACIDAD DE LOS SUELOS AGRÍCOLAS PARA CONSERVAR DE MANERA PERDURABLE UNA PRODUCCIÓN ESTABLE Y DE CALIDAD, CONSERVANDO LA ESTABILIDAD FRENTE A PROCESOS DEGRADATIVOS

FERTILIDAD FÍSICA

FERTILIDAD QUÍMICA

FERTILIDAD BIOLÓGICA

Un suelo sano es el ambiente natural de los microorganismos productores de antibióticos

La autodesinfección de un abono se logra por medio de la descomposición que bacterias, actinomicetos y hongos hacen de los restos orgánicos presentes en el suelo. Los productos resultantes de la actividad microbiológica poseen un efecto antagonista sobre las enfermedades del ser humano, animales y plantas.

Especie y agente activo	Actividad antagónica	
Trichoderma (Moho)	Ataca a los patógenos que provocan enfermedades de las raíces.	
Trichoderma lignorum	Ataca al tizón de las raíces en los cítricos o fitóftora de la raíz.	
Trichoderma viridis	Ataca al hongo Rhizoctonia solani que provoca pudriciones en el repollo joven	
Trichoderma lignorum	Ataca al hongo Phymatotrichum omnivorum en sandia capturando las hifas de este hongo filamentoso y provocando su muerte.	
Varios hongos	Atacan al hongo Fusarium lini que provoca la marchites de la planta de linaza.	
Penicillium expansum	Ataca a los hongos <i>Pythium o Baryanum</i> que provoca la podredum- bre de gramíneas.	
Antimicina (actinomices) (Streptomyces griseoviridis)	Produce la inhibición más o menos fuerte de 33 hongos que han sido investigados por provocar enfermedades.	

Actinomices 105	Ataca a los patógenos responsables de las podredumbres del tallo de las plántulas de zanahoria, café y negra del manzano, de la botritis, y monilia, de la mancha de fuego, del cancro del castaño, de la enfermedad del olmo holandés, del tizón de la papa/patata, y otras enfermedades.
Bacilos cortos (de trinidad)	Produce un antibiótico resistente a altas temperaturas que inhibe el crecimiento de 40 especies conocidas de hongos y levaduras en una dilución 1 : 1.000.000
Numerosas bacterias	Atacan la roña de la papa/patata y al carbón del maíz (Ustilago ma- ydis)
Bacillus simples	Presenta un efecto antagonista sobre Rhizoctonia solani (pudrición de las raíces). Produce un antibiótico que ataca a las enfermedades de las arvejas/guisantes y pepinos.
Varias bacterias	Eliminan a los hongos Fusarium y Helminthosporium que destruyen los cereales y la linaza.

Número relativo de antibióticos producidos por distintos grupos microbianos

Grupo microbiano	Número de antibióticos
Hor	gos
icomicetos	14
Ascomicetos	299
Penicillium	123
Aspergillus	Algebras apportus mar 115
Basidiomicetos	140
Hongos imperfectos	Considered in furnishing 315
Bact	erias
Especies de pseudomonas	171
Enterobacterias	36
Micrococos	16
Lactobacilos	28
Bacilos	338
Bacterias diversas	274
Actino	omicetos
Especies de Mycobacterium	- Reduce et execur/microto (4 ortices)
Especies de Actinoplanes	18
Especies de Streptomyces	3.872
Especies de Micromonospora	- Allow the restrict and the 41
Especies de Thermoactinomyces	- Flancasium Series de 17
Especies de Nocardia	48
Otras especies de actinomicetos	2.078

APLICACIÓN DE ENMIENDAS CALCAREAS I. SUELOS DE pH ACIDOS

DOLOMITA COMPUESTA

¿CÓMO, CUÁNTO Y CUÁNDO APLICAR?

Se aplica a la proyección de la copa del cafeto.

En promedio de 1-2 TM/Ha en dos partes (set-febrero). 20 días antes de la

fertilización.

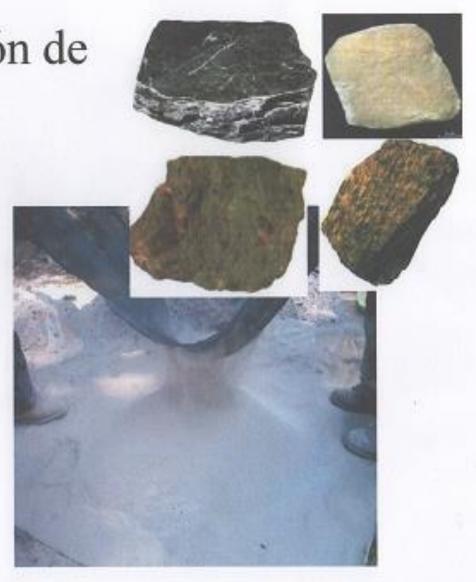
Lista incompleta de elementos constituyentes de las plantas

			Valor medio
Elemento	Valor Medio en mg	Elemento	en miligramos
Oxígeno- O	70.000	Cobre- Cu	0,2
Carbono- C	18.000	Titanio- Ti	0,1
Hidrógeno- H	10.000	Vanadio- V	0,1
Calcio- Ca	300	Boro- B	0,1
Potasio- K	300	Bario- Ba	<0,1
Nitrógeno- N	300	Estroncio- Sr	<0,1
Silicio- Si	150	Circonio- Zr	<0,1
Magnesio- Mg	70	Niquel- Ni	0,05
Fósforo- P	70	Arsénico- As	0,03
Azufre- S	50	Cobalto- Co	0,02
Aluminio- Al	20	Fluor- F	0,01
Sodio- Na	20	Litio- Li	0,01
Hierro- Fe	20	Yodo-I	0,01

Cloro- Cl	10	Plomo- Pb	<0,01
Manganeso- Mn	1	Cadmio- Cd	0,001
Cromo- Cr	0,5	Cesio- Cs	<0,001
Rubidio- Rb	0,5	Selenio- Se	<0,0001
Cinc- Zn	0,3	Mercurio- Hg	<0,0001
Molibdeno- Mo	0,3	Radio- Ra	<0,000.000.000.001

Fuente: A.P. Vinagradov, Russia. Tomado de documento inédito. "Cartilla de la remineralización de los alimentos", Pinheiro Sebastiao. Fundación Juquira Candirú. Porto Alegre. Rs. Brasil. 2002.

Cuadro 1. Contenidos de nutrientes en tres formas de bocashi.


	1	II	III
Nitrógeno (%)	1,18	0,96	0,93
Fósforo (%)	0,70	0,58	0,44
Potasio (%)	0,50	0,51	0,47
Calcio (%)	2,05	2,26	2,58
Magnesio (%)	0,21	0,20	0,20
Hierro (mg/l)	2,304	4,260	2,312
Manganeso (mg/l)	506	495	531
Zinc (mg/l)	61	78	205
Cobre (mg/l)	19	33	28
Boro (mg/l)	14	8	f.d.

Fuente: Rodríguez y Paniagua, 1994. f.d. = falta dato mg/l = ppm (partes por millón).

HARINA DE ROCAS (PIEDRAS)

Remineralización de suelos

La utilización de harinas de roca de distinto origen, permite restaurar suelos con marcadas carencias minerales, partiendo del hecho de que el origen mineral del suelo es su roca madre

Composición del MB-4 harina de roca (resultado de análisis 2256/90) en mg/kg

Litio Li	50	Sodio Na	122.000	Potasio K	13.600
Aluminio Al	96.000	Cesio Cs	<50	Magnesio Mg	77.000
Calcio Ca	39.000	Estroncio Sr	200	Bario Ba	420
Titanio Ti	3.900	Circonio Zr	800	Cromo Cr	1.100
Manganeso Mn	780	Hierro Fe	60.000	Cobalto Co	78
Niquel Ni	78	Plata Ag	5	Cobre Cu	30
Renio Re	5	Paladio Pd	30	Estaño Sn	5
Plomo Pb	200	Mercurio Hg	<0,001	Cinc Zn	120
Bismuto Sb	5	Selenio Se	<0,001	Fósforo P	5000
Arsenico As	<1	Telurio Te	<1	Lantano La	220
Cerio Ce	270	Praseodimio Pr	9	Niobio Nb	11

Samario Sm	4	Europio Eu	0,5	Gadolinio Gd	0,5
Terbio Tb	0,5	Itrio Y	3	Disprosio Dy	0,5
Holmio Ho	0,5	Erbio Er	0,5	Tántalo Ta	12
Yterbio Yb	0,5	Lutecio Lu	0,5	Escandio Sc	7
Platino Pt	< 1	Indio In	<1	Boro B	1900
Galio Ga	150	Tulio Tm	0,5		

Fuente: Fundación Juquira Candirú. Sebastián Pinheiro. RS. Brasil

Análisis por absorción atómica de roca mineral disponible para los productores a un bajo costo que puede ser usada para preparar biofertilizantes.

Silicio (Si)	59 %	Boro (B)	10 ppm
Hierro (Fe)	6 %	Neodimio (Nd)	21 ppm
Magnesio (Mg)	2.5 %	Praseodimio (Pr)	20 ppm
Azufre (S)	2 %	Galio (Ga)	17 ppm
Potasio (K)	1.3 %	Cadmio (Cd)	17 ppm
Sodio (Na)	1.2 %	Escandio (Sc)	10 ppm
Fòsforo (P)	0.1 %	Plomo (Pb)	10 ppm
Calcio (Ca)	2.2 %	Molibdeno (Mo)	13 ppm
Titanio (Ti)	0.5 %	Arsénico (As)	6 ppm
Estroncio (Sr)	0.16 %	Cromo (Cr)	8.6 ppm
Bario (Ba)	0.1 %	Litio (Li)	6.3 ppm
Cobre (Cu)	327 ppm	Hafnio (Hf)	3.7 ppm
Vanadio (V)	156 ppm	Cesio (Cs)	2.1 ppm
Zirconio (Zr)	144 ppm	Gadolinio (Gd)	2.0 ppm

Manganeso (Mn)	9 ppm	Holmio (Ho)	2.0 ppm
Zinc (Zn)	78 ppm	Disprosio (Dy)	1.9 ppm
Flùor (F)	500 ppm	Uranio (U)	1.8 ppm
Cerio (Ce)	68 ppm	Yodo (I)	1.7 ppm
Rubidio (Rb)	42 ppm	Selenio (Se)	1.6 ppm
Cloro (Cl)	40 ppm	Bromo (Br)	1.4 ppm
Lantano (La)	33 ppm	Europio (Eu)	1.1 ppm
Níquel (Ni)	30 ppm	Estaño (Sn)	0.1 ppm

Fuente: Xavier Lazo. Fundación AMBIO/ San José. Costa Rica. Abril 2002 Adaptación: Jairo Restrepo Rivera.

Composición química promedia de basalto y granito de acuerdo con Wedephol (1967)

Elementos	Basalto	Granito
SiO_2	49,50%	72,97%
TiO ₂	2,10%	0,29%
Al_2O_3	14,95%	13,80%
Fe ₂ O ₃	3,70%	0,82%
FeO	8,70%	1,40%
MnO	0,19%	0,06%
MgO	6,80%	0,39%
CaO	9,60%	1,03%
Na ₂ O	2,85%	3,22%
K ₂ O	1,15%	5,30%
P_2O_5	0,38%	0,16%
Mn	1500 ppm	390 ppm
Cu	87 ppm	8 ppm

Zn	105 ppm	39 ppm
В	5 ppm	10 ppm
Mo	1,5 ppm	1,3 ppm
Cr	220 ppm	4 ppm
Со	48 ppm	1 ppm
Ni	200 ppm	4,5 ppm
Sr	465 ppm	100 ppm
Ba	330 ppm	840 ppm

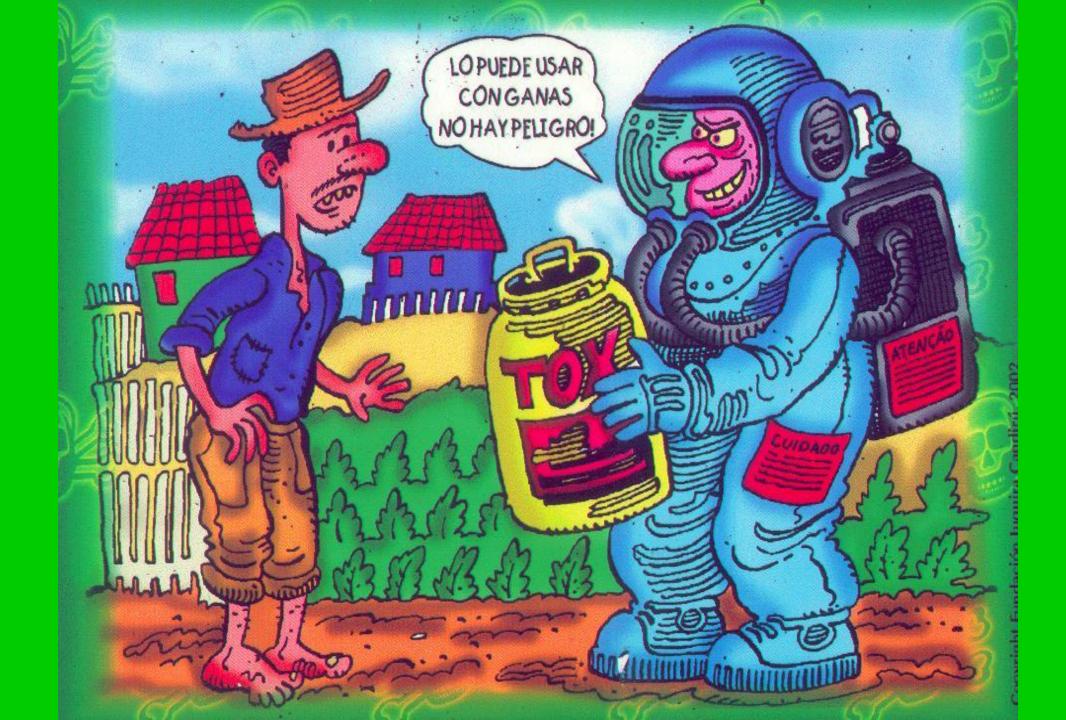
Wedepohl, K.H., 1967: Geochemie. In: Brinkmann, R (Hrsg.): Lehrbuch der allgemeinen Geologie, Bd. 3,548-606. Verlag Ferdinand Enke, Stuttgart.

Relación entre plagas, enfermedades y deficiencias Ninguna planta puede ser parasitada si no ofrece al parásito el substrato que él necesita

Plagas y enfermedades	Deficiencia de	
Abejorro serrador (Onicerdes impluviata)	Magnesio	
Antracnosis en fríjol y poroto	Calcio	
Babosas en soya y huertas	Cobre y rotación con avena	
Hoja Blanca en Arroz	Cobre	
Elasmopalpus lignosellus en maíz y fríjol	Semillas con deficiencias de zinc	
Hormiga arriera	Molibdeno, azufre o nitrógeno nítrico	
Oruga rosada (Platyedra gossyp)	Molibdeno y fósforo	
Oruga de Maíz (Spodoptera frugiperda)	Boro	
Escarabajo herbívoro	Suelos muy compactados	
Pseudomonas-agresiva en tabaco	Potasio	
Roya en café	Cobre (zinc y manganeso)	
Roya en trigo	Boro y cobre	
Sarna (Streptomyces scabis)	Boro (pH inadecuado)	

PESTICIDAS

1.INSECTICIDAS


2.FUNGICIDAS

3.ABONOS FOLIARES (QUIMICOS

4.HERBICIDAS:

EFECTOS DEL GLIFOSATO (ROUNDUP) EN LOS SUELOS, LOS CULTIVOS Y LOS CONSUMINORES

Enfermedades provocadas por exceso de nitrógeno

Enfermedad	Cultivo	
Alternaria	Tabaco, tomate	
Botrytis	Vid, fresa	
Erwinia	Papa	
Erysiphe	Cereales, frutales	
Pernospora	Lechuga, nabo, vid	
Pseudomonas	Tabaco	
Puccinia y Uromyces	Fríjol, cereales	
Septoria	Trigo	
Verticillium	Algodón, clavo, tomate	

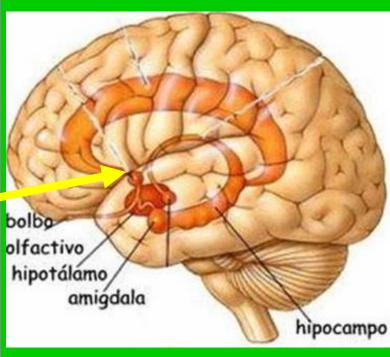
Fuente: Ana María Primavesi, Curso de agricultura de sol y malezas, iica, 2002 Bogotá, Colombia. Adaptación: Jairo Restrepo Rivera, 2003.

Los pesticidas inducen a deficiencias minerales, por ejemplo:

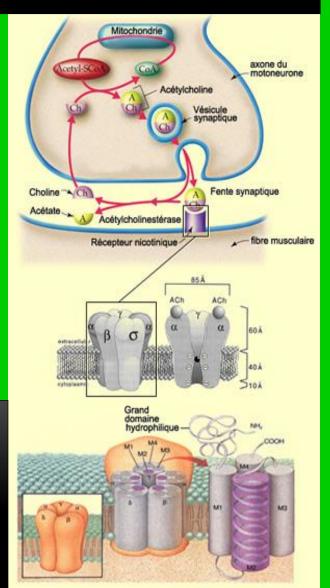
Metal básico	Producto	Deficiencia inducida
Cu	Caldo Bordelés, Nortox, Cupravit	Fe, Mn, Mo, Zn.
Fe	Fermate, Ferban	Mg, Mn, Mo, Zn
Mn	Maneb, Manzate, Trimangol	Ca, Fe, Mg, Zn
NH	Captane, Glyodin, Brasicol	B, Ca, Cu, K, Mg, P
Na	Naban	NH, K, Mo
Р	Malathion, Parathion, Supracid	B, Fe, Mn, S, Zn

Fuente: Ana María Primavesi. Curso de agricultura de sol y malezas, IICA, 2002 Bogotá, Colombia, Adaptación: Jairo Restrepo Rivera, 2003.

EFECTOS DE GLIFOSATO(BAZUKA)



Cultivos de plátano y pasto, 15 días después de recibir aspersión directa de glifosato



NIÑOS EXPUESTOS A VENENO FOSFORADO PIERDEN LA MEMORIA LIMBICA Y TIENEN DIFICULTADES PARA EL APRENDIZADO

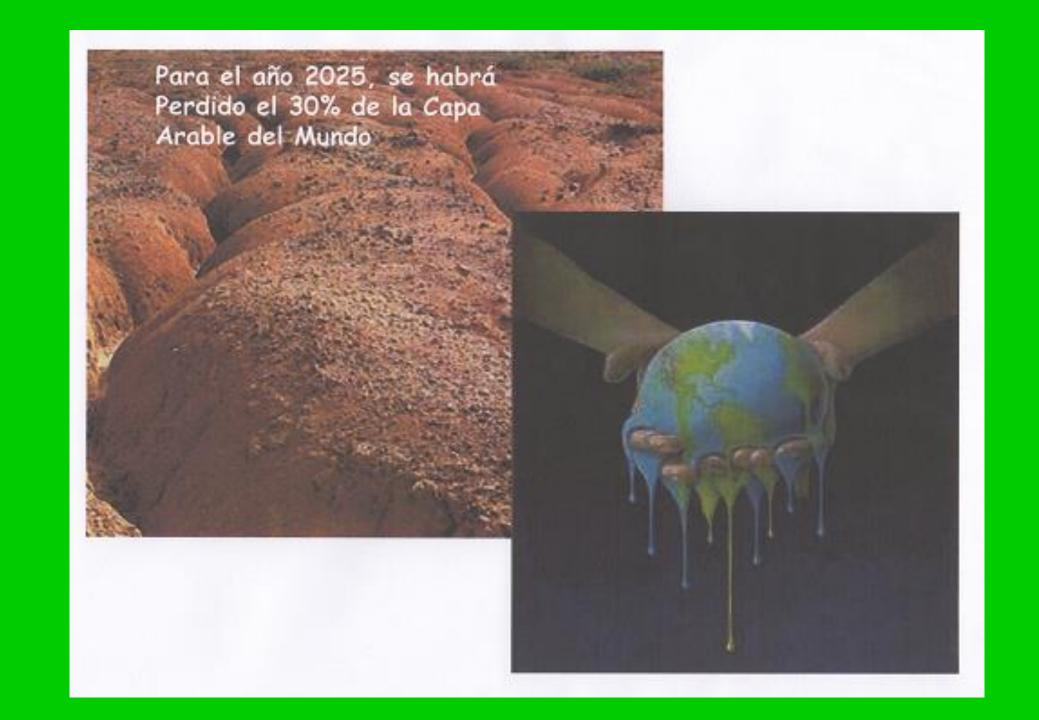
HOY LOS NIÑOS TOMAN ANTIDEPRESIVOS

"EL 85% DE LAS TOALLAS HIGIÉNICAS, TAMPAX, ALGODÓN Y GASAS **ESTÉRILES** TIENEN GLIFOSATO. VENENO PARA EL ÚTERO Y EL ORGANISMO".

Esto se debe a los Monocultivos de algodón Trangénico El Glifosato según la OMS es cancerígeno.

> DR.DAMIAN MARINO, UNIVERSIDAD NACIONAL DE LA PLATA. 3° CONGRESO DE LOS MÉDICOS DE LOS PUEBLOS FUMIGADOS. OCTUBRE 2015

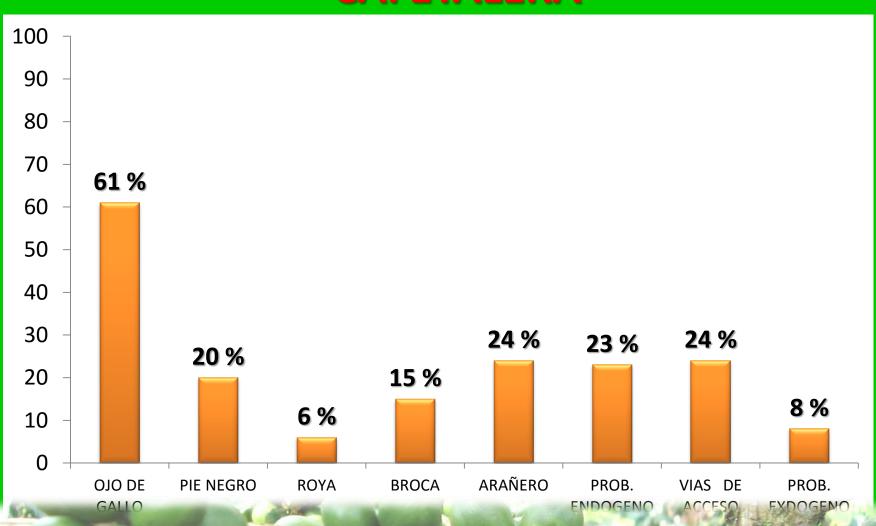
FOTOS CACAO SAN MIGUEL — NUEVO HORIZONTE - TOCACHE



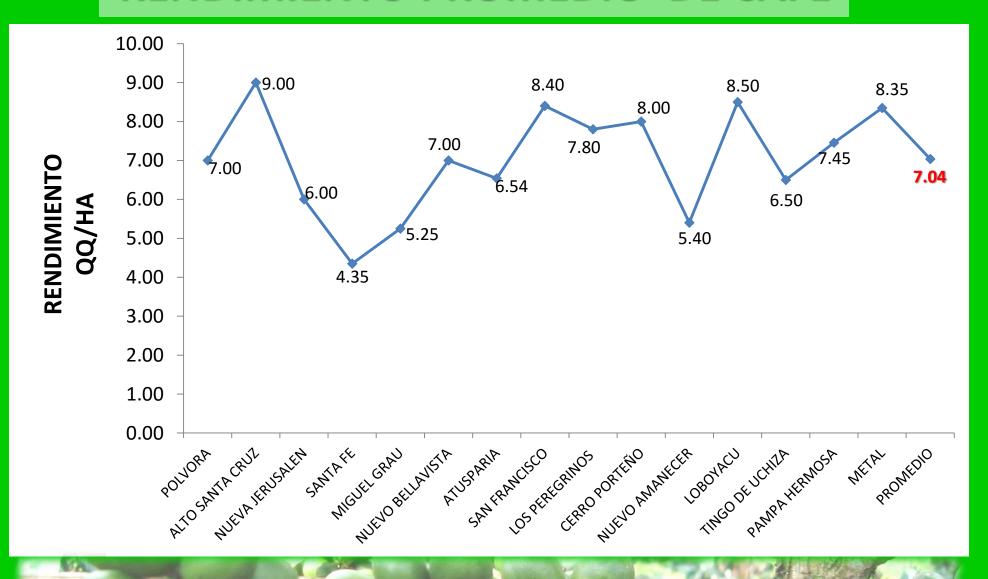
SUELO DEGRAGADO POR PESTICIDAS Y DISTURBIO MINERAL

CADMIO

Н																	₂ He
зLi	₄ Be											5B	åC	₇ N	:0	₉ F	10Ne
11Na	12Mg											13AI	1481	16P	168	HCI	18Ar
19K	20Ca	21SC	22 T ī	23	24Cr	₂₅ Mn	₂₈ Fe	27C0	28NI	29Cu	_{ao} Zn	31Ga	32Ge	₉₃ As	34 Se	35Br	38Kr
37Rb	38 Sr	39 Y	40Zr	41Nb	42M0	43 Tc	44Ru	45Rh	46Pd	47Ag	48Cd	49 ln	50Sn	51Sb	₅₂ Te	53	54Xe
55Cs	₅₆ Ba	57-71	72 Hf	₇₃ Ta	74W	75Re	76Os	₇₇ r	78Pt	79AU	80Hg	81TI	82 Pb	83Bi	84P0	₈₅ At	agRn
87Fr	88Ra	89-103	104Db	105J0	106Rf	107Bh	108Hn	109Mt	110	111							
																	1
		57La	₅₈ Ce	59Pr	60Nd	61Pm	62Sm	63Eu	64Gd	₈₆ Tb	66Dy	67H0	68Er	₆₉ Tm	70Yb	71LU	
		89Ac	₉₀ Th	91Pa	₉₂ U	93Np	94Pu	₉₅ Am	96Cm	97Bk	98Cf	99Es	10)Fm	101Md	102No	103Lr	


fig 1. Tabla periódica de elementos en la biosfera. Sellnus et al., (2005). Elementos mayoritarios elementos minoritarios elementos traza elementos traza esenciales gases nobles los que están en rojo se consideran elementos tóxicos.

MANEJO ORGANICO DE CAFE



PROBLEMÁTICA DE LA ACTIVIDAD CAFETALERA

RENDIMIENTO PROMEDIO DE CAFE

PALOTEADO

PODAS Y MANEJO DE SOMBRA

PANEL FOTOGRAFICO Y RESULTADOS DE PRODUCCION

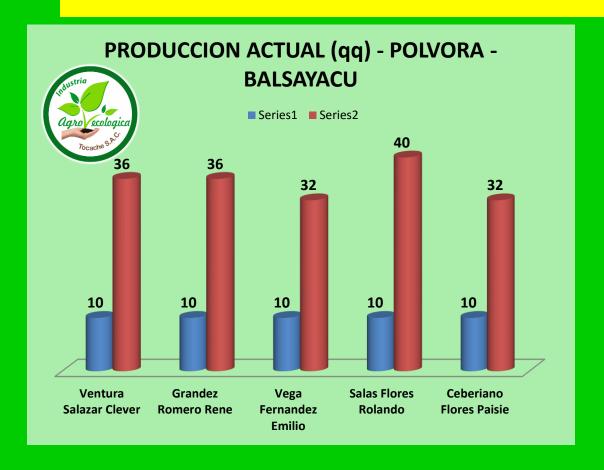
SISTEMA AGROFORESTAL PINO TECUNUMANII

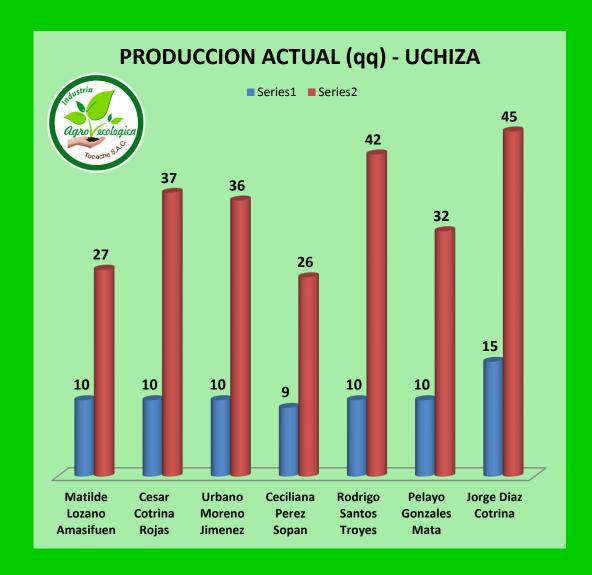
VISITA DEL DIRECTOR REGIONAL DE AGRICULTURA - DRASAM

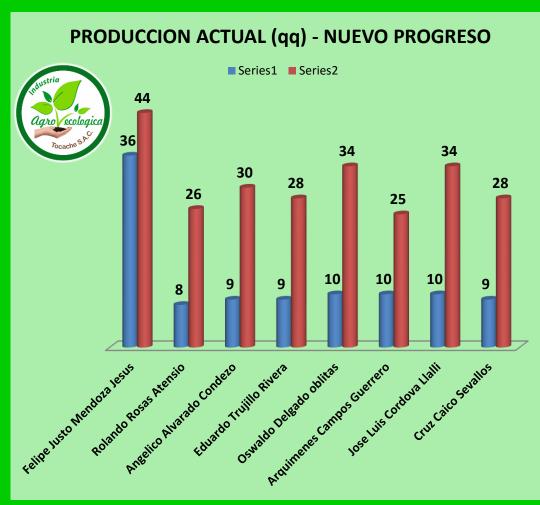
PARCELA DEMOSTRATIVA – MIGUEL GRAU – AMANCIO ÑAVINCOPA

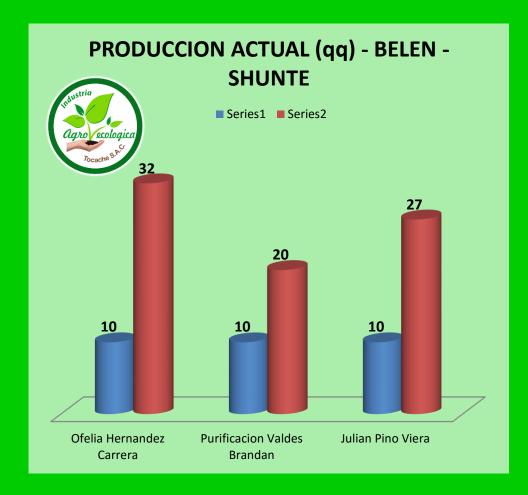
NUTRICION ORGANICA

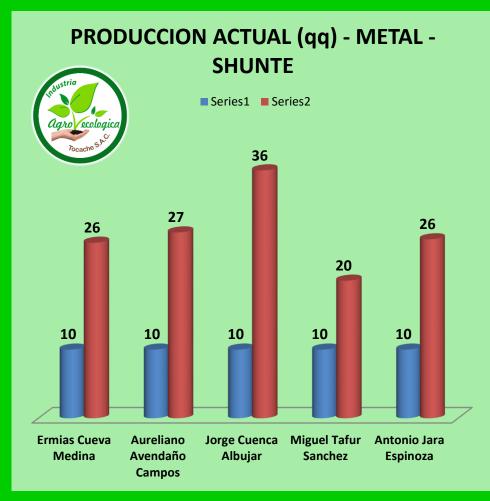
PARCELA DEMOSTRATIVA TOCACHE

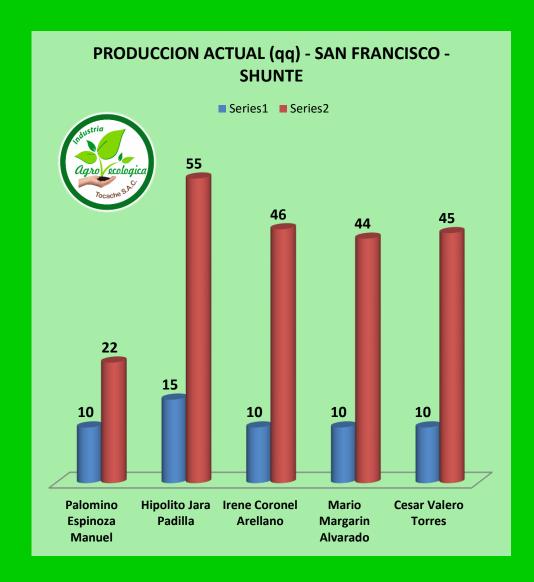


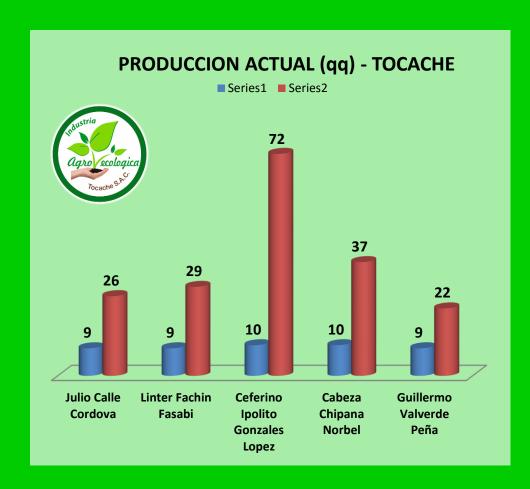



RESULTADOS OBTENIDOS TOCACHE









MANEJO ORGANICO DE PALMERA

DEFICIENCIA SEVERA DE CALCIO Y BORO

DEFICIENCIA SEVERA DE BORO

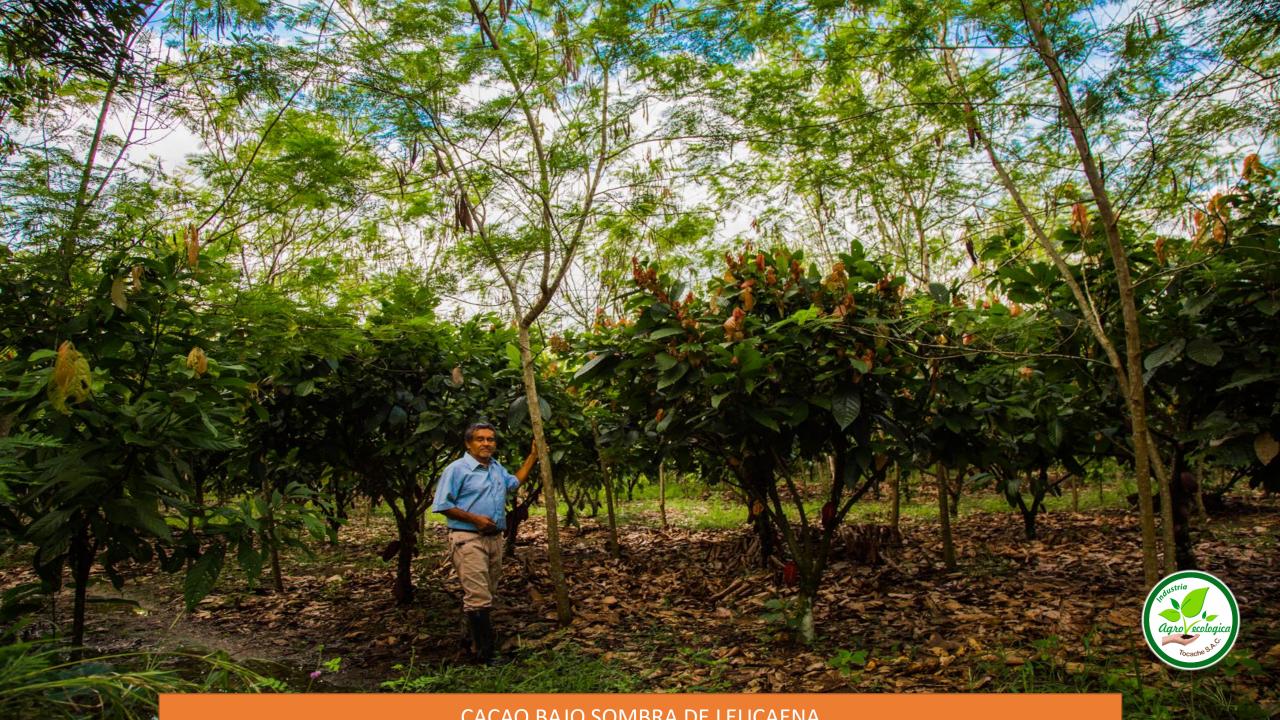
EFECTO DE LA APLICACIÓN DE DOLOMITA COMPUESTA, BIO HARINA DE ROCA COMPUESTA Y BIO FERTILIZANTES

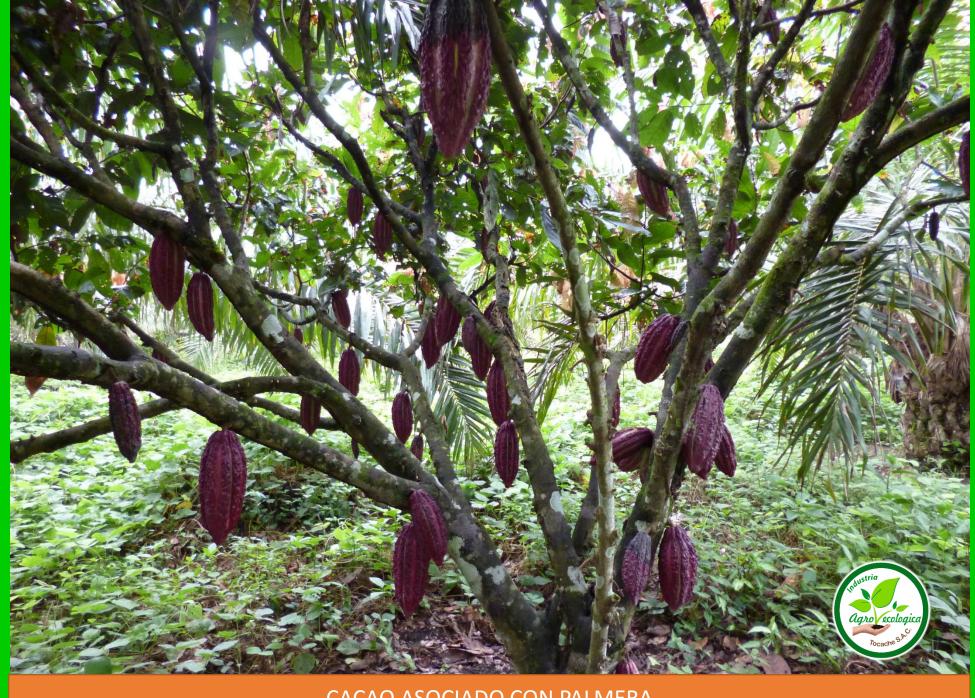
HERIBERTO DIAZ DIAZ – N. BAMBAMARCA - TOCACHE

PARCELA DEMOSTRATIVA: SANTA ANCHILLA / RENDIMIENTO: 28 TM/Ha

MANEJO ORGANICO DE ARROZ

ARROZ SECANO 5200 kg/ha


MANEJO ORGANICO DE CACAO



CACAO ASOCIADO CON KUDZO – POLVORA – PUERTO RICO

CACAO ASOCIADO CON PALMERA

RENDIMIENTO PROMEDIO DE GRANOS DE CACAO DE 2500 A 3000 TM / Ha

USOS DEL AGUA DE MAR

- Agricultura: Ormus y Agua de mar.
- Ganadería: Agua de mar, sal marina.
- Sal Mineral: Sal Marina, Ceniza de Fogón de leña, Harina de Huesos, Azufre Agrícola.
- Humana: Agua de mar, ormus, suero Isotónico

Empanizado de Semilla

Ingredientes para 100 kilos de semilla

Melaza
Bio Harina de Roca
sulfato de Cobre
Sulfato de Zinc
Sulfato de Magnesio
Sulfato Ferroso
Borax
Diatomita
Bentonita
Calcita
Feldepasto

PANEL FOTOGRÁFICO

QUEMA DE HUESOS

Preparación de Abonos solidos

Preparación de Abonos Líquidos Biopolicalcio

RUC: 20450276279

DOLOMITA COMPUESTA

Baja la acidez del suelo, mejora las condiciones físicas, químicas y biológicas del suelo.

Cel.: 910527315 - 931977696 AV. MOISES DIAZ. S/N. NUEVO BAMBAMARCA - TOCACHE

www.industriaagroecologica.pe

RUC: 20450276279
BIO HARINA DE
ROCA
COMPUESTA

REMINERALIZADOR DE SUELOS DEGRADADOS Y PLANTAS

Cel.: 910527315 - 931977696

AV. MOISES DIAZ. S/N. NUEVO BAMBAMARCA - TOCACHE

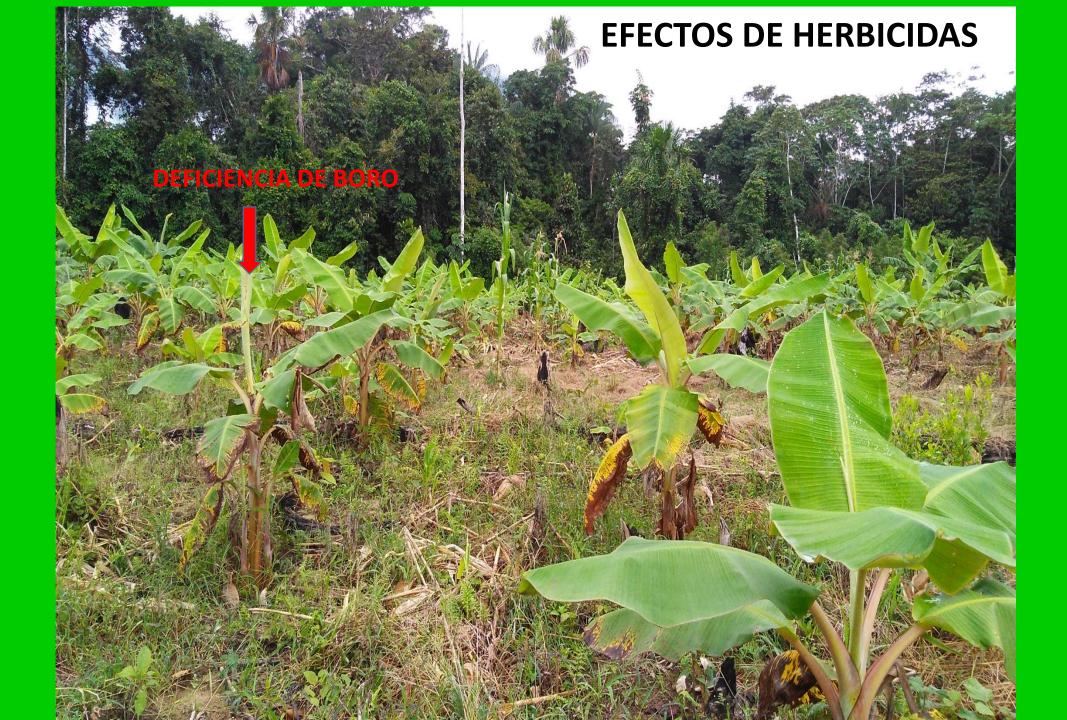
www.industriaagroecologica.pe

Quema de harina de huesos para hacer Fosfitos

Productos de Industria Agroecologica Tocache Sac.

Preparación de Mermelada de Flor de Jamaica

Pasantías



PARCELA DEMOSTRATIVA DE SOJA

