PROVEEDOR DE SOLUCIONES GLOBALES

ÍNDICE

01

RESUMEN DE LA EMPRESA

- Resumen de la Empresa
- Organigrama
- Quiénes somos
- Presencia Global
- Dónde estamos (COREA)
- | Dónde estamos (Global)

02

TECNOLOGÍAS PARA TRATAMIENTO DE RESIDUOS

- | Evolución de Tratamiento de Residuos
- | Recolección de Residuos
- | Tecnología para Tratamiento de Residuos
- | Procesamiento Intermedio de Residuos
- | Aprovechamiento Energético de Residuos
- **Disposición Final**

01

RESUMEN DE LA EMPRESA

RESUMEN DE LA EMPRESA

| Organigrama

QUIÉNES SOMOS

| Presencia global

| DÓNDE ESTAMOS (COREA)

| DÓNDE ESTAMOS (GLOBAL)

RESUMEN DE LA EMPRESA

Fundación

15 de Agosto, **1957**

Áreas de Servicio

Estudios y Plan Maestro, Diseños de Ingeniería, Supervisión de Construcción, Gestión de Proyectos (para todo tipo de proyectos de inversión en infraestructura)

Recursos Humanos(2019)

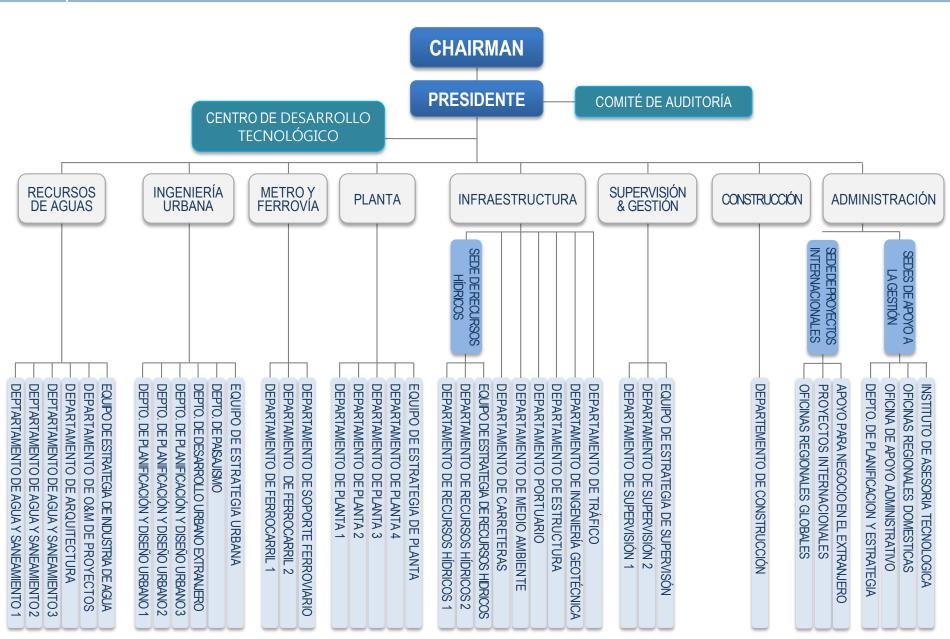
2,082 Personas

Activo Total (2018)

aprox. USD 335 millones

Capital Social (2018)

aprox. USD 15.1 millones


Ingreso Anual (2018)

aprox. USD 360.8 millones

Monto Adjudicado (2018)

aprox. USD 687.3 millones

Total de Empleados: 2,084 (Mayo, 2019)

Número Total de Ingenieros: 1,841

LICENCIAS

Actividades de Ingeniería Multi-disciplinadas, Supervisión de Construcción, Centro de Investigación y Desarrollo en operación

413 proyectos internacionales en **66** países en **17** sectores

\$866 millones de dólares estadounidenses por proyectos internacionales

24 sucursales en 21 países (Asia, región del Cáucaso, Medio Oriente, África y América)

TOP 10 empresas coreanas de ingeniería

Fuente: Engineering Daily, 2018

THE TOP 225 INTERNATIONAL DESIGN FIRMS

The Top 225 List

RANK 2018 201	7 FIRM	FIRM TYPE	2017 INT'L IN \$ MIL	REVENUE % OF TOTAL REV.	GENERAL RIII	MANUFACTURE	POWER	WATER SUPP	SEWER/WAS	Mous, per	TRANSPORTA	HAZARDOUSWA	TELECOM
77 75	CHINA RAILWAY GROUP LTD., Beijing, China [†]	EC	123.9	6	1	0	0	0	0	0	99	0	0
78 73	CDM SMITH, Boston, Mass., U.S.A. [†]	EA	123.8	18	5	0	5	19	13	0	36	22	0
70 7	AFGION CORP. Chastorfield. Mo. 115.A	LEC	123.5	41	5	0	0	0	11	81	4	0	0
80 105 DOHWA ENGINEERING CO., LTD. Seoul, S. Korea		a 🗌	120.7	34	0	0	71	5	3	0	20	0	0
81 9	ITALCONSULT SPA, Rome, Italy [†]	Е	118.6	96	41	0	0	7	6	0	45	0	0
82 12	ACCIONA INFRAESTRUCTURAS, Madrid, Spain [†]	EC	113.7	93	0	0	7	12	4	0	77	0	0
83 8	BECA GROUP LTD., Auckland, New Zealand [†]	EA	112.9	29	27	15	4	7	0	18	26	0	0

THE TOP 150 GLOBAL DESIGN FIRMS

The Top 150 List

87	100	NV5 GLOBAL INC., Hollywood, Fla., U.S.A.†	Е	367.1	13.4	50	0	16	5	1	2	20	6	1
88	73	KHATIB & ALAMI, Beirut, Lebanon [†]	EA	364.8	354.1	50	0	7	17	6	2	12	0	0
89	90	IBI GROUP, Toronto, Ontario, Canada [†]	EA	362.0	248.6	73	7	2	2	0	0	14	0	2
90	109	DOHWA ENGINEERING CO., LTD. Seoul, S. Korea	Е	360.2	120.7	2	0	29	16	18	0	20	0	0
91	63	SENER INGENIERIA Y SISTEMAS SA, Las Arenas (Getxo), Vizcaya, Spain	EC	359.1	339.3	0	0	49	0	0	12	38	0	0
92	94	ASSYSTEM, Paris, France [†]	EC	357.1	143.9	10	4	70	0	0	10	2	1	0
93	93	SKIDMORE, OWINGS & MERRILL LLP, New York, N.Y., U.S.A.†	AE	351.1	158.1	86	0	0	0	0	0	14	0	0

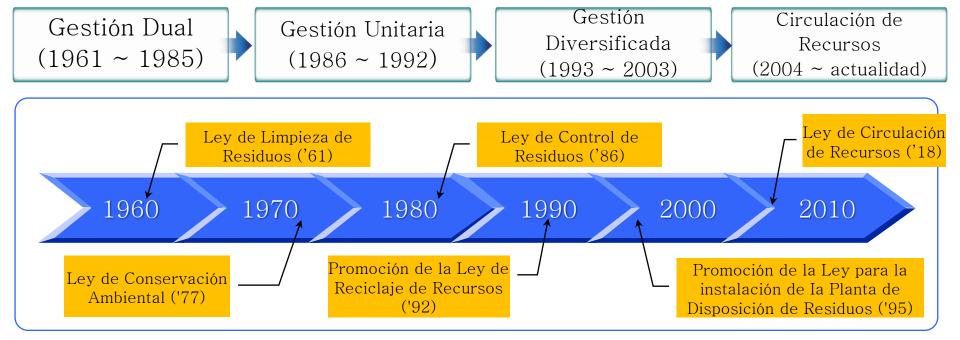
02

TECNOLOGÍAS PARA TRATAMIENTO DE RESIDUOS

Evolución de Tratamiento de Residuos

Recolección de Residuos

Tecnología para Tratamiento de Residuos


Procesamiento Intermedio de Residuos

Aprovechamiento Energético de Residuos

Disposición Final

1. EVOLUCIÓN DE TRATAMIENTO DE RESIDUOS

A. Cambio de la Política de Gestión de Residuos

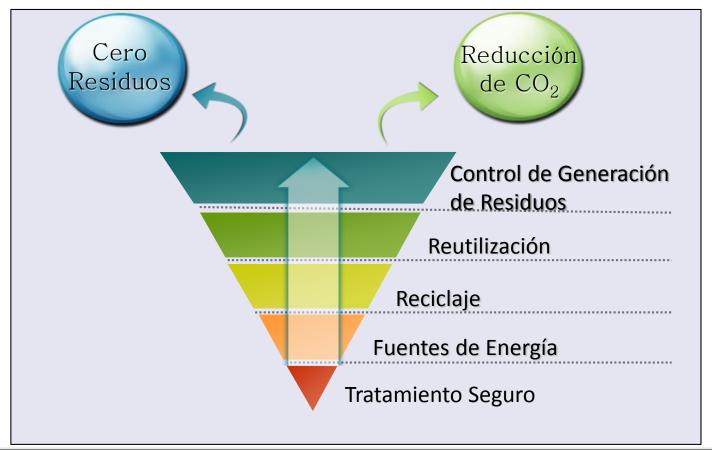
Reducción

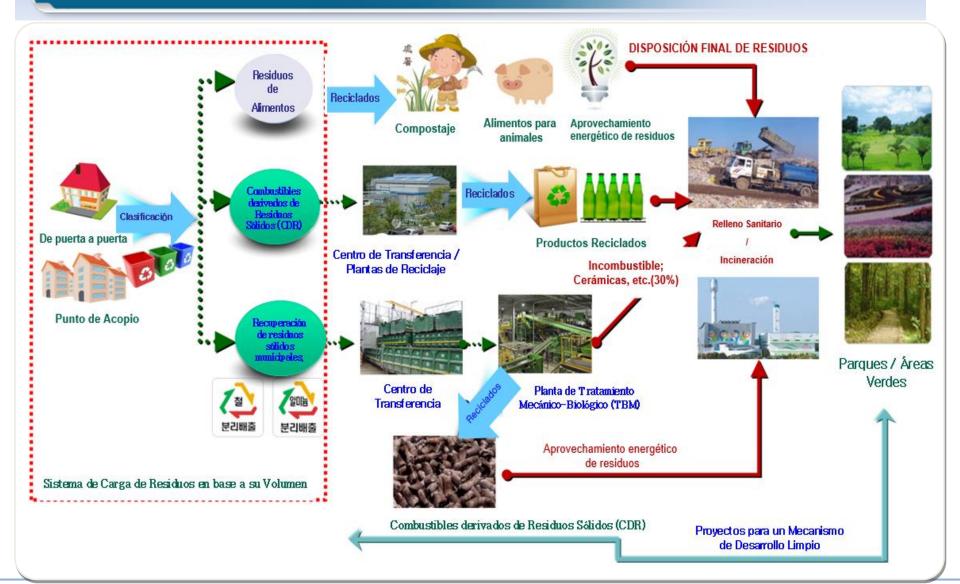
- Sistema de Carga de Residuos ('93)
- Reducción de Residuos de Embalaje ('93)
- Reglamento sobre Productos
 Desechables ('93)
- Reducción de Residuos Industriales ('96)

Reciclaje

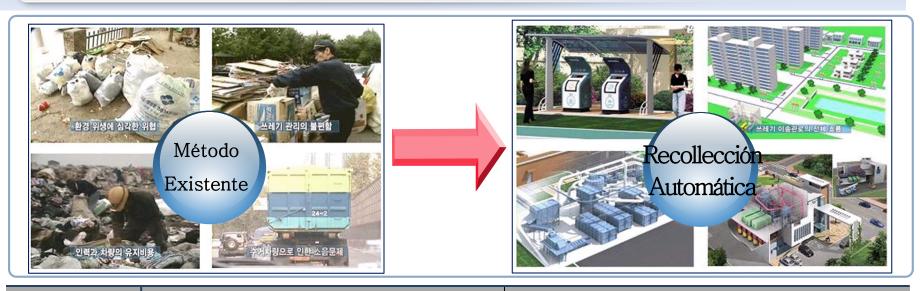
- Sistema Tarifario de Residuos basado en el volumen ('95)
- Responsabilidad Ampliada del Productor
 ('03)
- Reciclaje de Residuos de Construcción ('05)

Circulación de Recursos

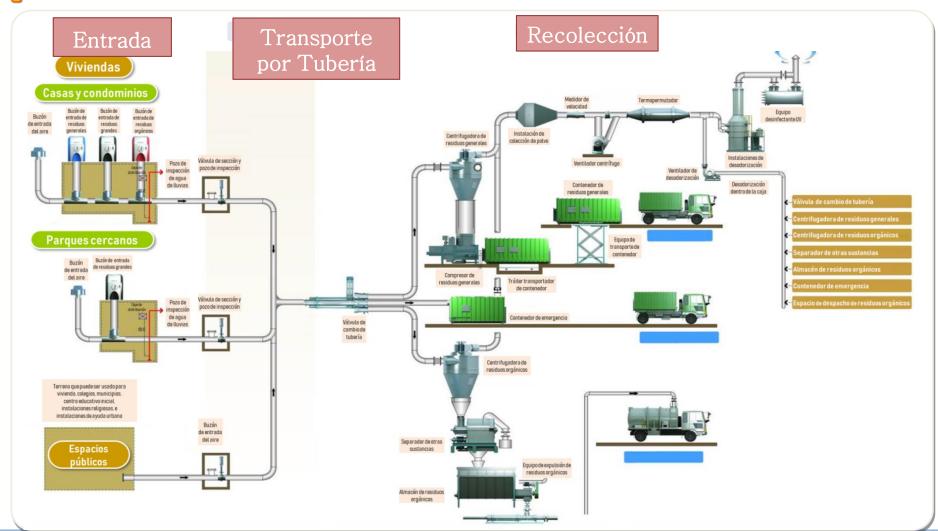

- Sistema Electrónico de Reporte de Residuos ('99)
- Gestión de Residuos Peligrosos ('03)
- Recuperación de Energía a partir de Residuos ('09)
- Circulación de Recursos a partir de Residuos ('18)


1. EVOLUCION DE TRATAMIENTO DE RESIDUOS

B. Cambio de Paradigma


- Ocontrol de generación de residuos (Reducción) ⇒ Reutilización y Reciclaje ⇒ Fuentes de Energía (Recuperación) ⇒ Tratamiento Seguro: Promover la reducción de CO2 y cero residuos mediante la construcción de un sistema de tratamiento de residuos (4R)
 - → Sociedad de Recirculación de Recursos

A. Recolección Selectiva de Residuos (One-Stop SWM System)


B. Sistema de Recolección Automática de Residuos

Div.	Método Existente	Sistema de Recolección Automática de Residuos						
Transporte	 Toma mucho tiempo para tratar el residuo y existe problema en la carga de estos. 	• Sin problema de carga (instalación en sótano).						
Ambiente	 Carga al aire libre: Ambiente insalubre y olor que se genera y atrae insectos. Problema de ruido y seguridad debido al transporte por carretera. 	I ransporte por tuberia sellada (via sanitaria sin olor). Sanitario seguro y sin ruidos gracias al proceso.						
Gestión	• Condición laboral pésima e insalubre.	• Se requiere de solo unos pocos empleados debido al sistema automático.						
Otros	 Alto costo de operación y mantenimiento a pesar del bajo costo inicial. 	 Se necesita terreno, transporte por tubería, y equipos, Económico debido al bajo costo de operación y mantenimiento. 						

B. Sistema de Recolección Automática de Residuos

Proceso del Sistema de Recolección Automática de Residuos

B. Sistema de Recolección Automática de Residuos

3. TECNOLOGÍA PARA TRATAMIENTO DE RESIDUOS

Procedimiento paso a paso de Tecnologías para el tratamiento de residuos

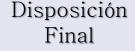
Recolección de Residuos

- RecolecciónSelectiva deResiduos
- •Sistema de Recolección Automática de Residuos

Pretratamiento de Residuos

- Planta de reciclaje
- Tratamiento de residuos de demolición.

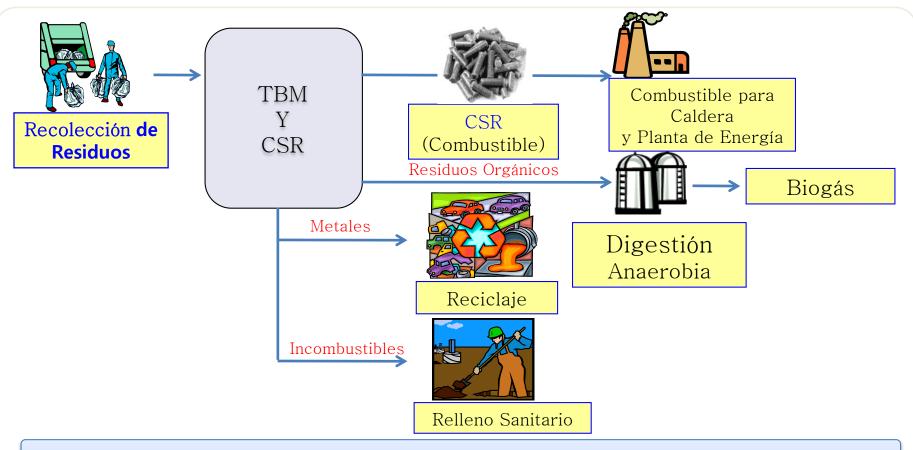
Procesamiento Intermedio de Residuos


- Incineradores
- Instalaciones TMB (Tratamiento Mecánico-
- Gasificación por plasma

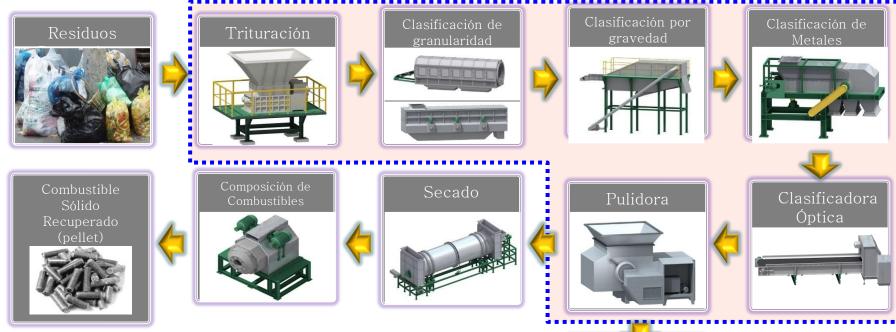
Biológico)

Aprovechamiento Energético de Residuos

- Conversión de residuos de combustibles a energía.
- Conversión de residuos de alimentos a gas
- Tratamiento de lodos orgánicos
- LFG (Gas de Vertedero)
- Biorreactor



- Relleno Sanitario
- Mantenimiento y
 Restauración
 de rellenos no
 sanitarios
- Relleno sanitario sostenible


A. Tratamiento Mecánico-Biológico (TBM) y Combustibles derivados de Residuos Sólidos (CDR)

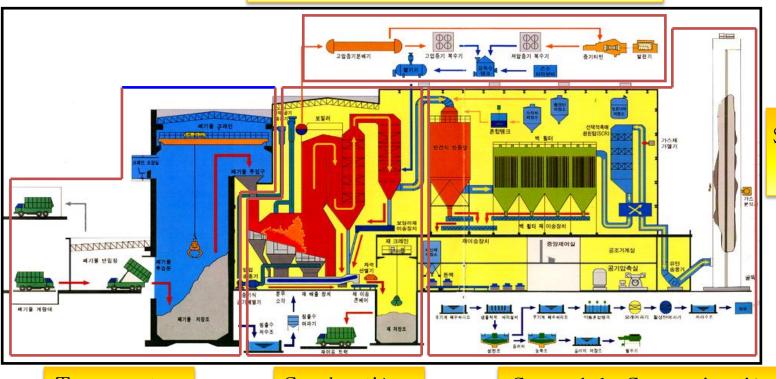
- Separación de residuos domésticos mediante pre-tratamiento mecánico (combustibles, metales, alimentos e incombustibles)
- Residuos de combustible → SRF Producción → Utilización como combustible
- Metales y No-metales → Reciclaje (Venta)

- Residuos de alimentos → Producción de biogás (CH4) por digestión anaerobia.
- <u>Residuos de incombustible</u> → Relleno Sanitario

- A. Tratamiento Mecánico-Biológico (TBM) Y Combustibles derivados de Residuos Sólidos (CDR)
- Proceso del Combustibles derivados de Residuos Sólidos (CDR)

- Trituradora: Trituración para una alta eficiencia de separación
- Clasificación de granularidad: Separación (Alimentos, Arenas por granularidad)
- Clasificación por gravedad específica: Separación de residuos de incombustible
- Metal: Metales, no metales
- Clasificadora Óptica: Separación de PVC de residuos de combustibles
- Pulidora: Pulido adecuado para la composición de CSR

A. Tratamiento Mecánico-Biológico (TBM) y Combustibles derivados de Residuos Sólidos (CDR)



B. Incinerador de Residuos

- Objetivos:
 - Reducción del residuo dispuesto Tratamiento sanitario de residuos de combustible Recuperación de energía

Planta para utilización de calor residual

Sistema de Monitoreo Total

Transporte

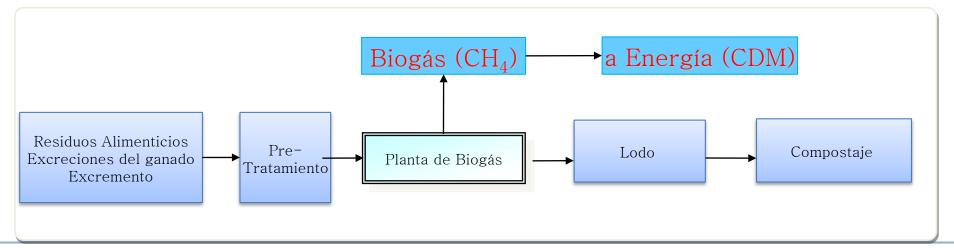
Combustión

Control de Contaminación

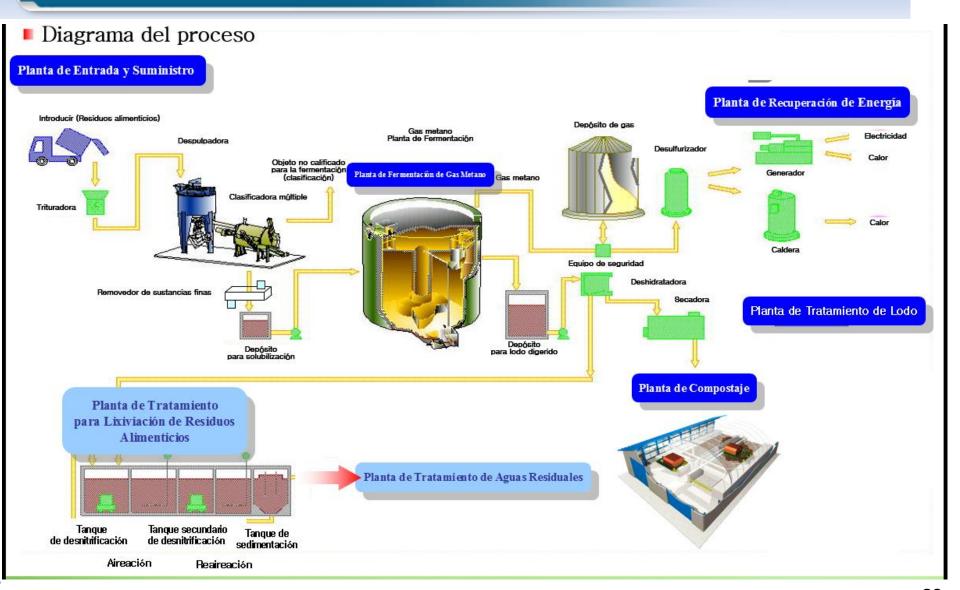
B. Incinerador de Residuos

B. Incinerador de Residuos

A. Aprovechamiento Energético de Residuos Alimenticios

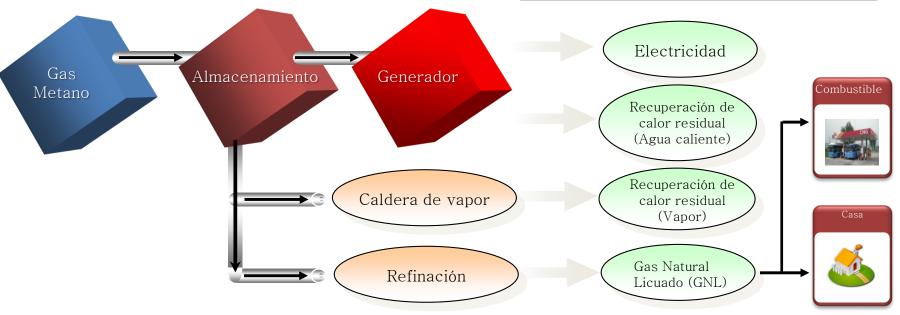

['07] 0.16 Mt de recursos de residuos orgánicos (64 Mt) fueron convertidos a biogás

['13] 26%


['25] 100%

- 7.74 Mt (12%) de la cantidad total de residuos orgánicos (64 Mt) se vertió en el mar ('07).
- Aprovechamiento Energético de Residuos Alimenticios
 - ➤ Hasta '13, 17 plantas de producción de biogás
 - Planta de producción de biogás: Relleno Sanitario de Pusan Sanggok (200t/día, 2MW).

A. Aprovechamiento Energético de Residuos Alimenticios

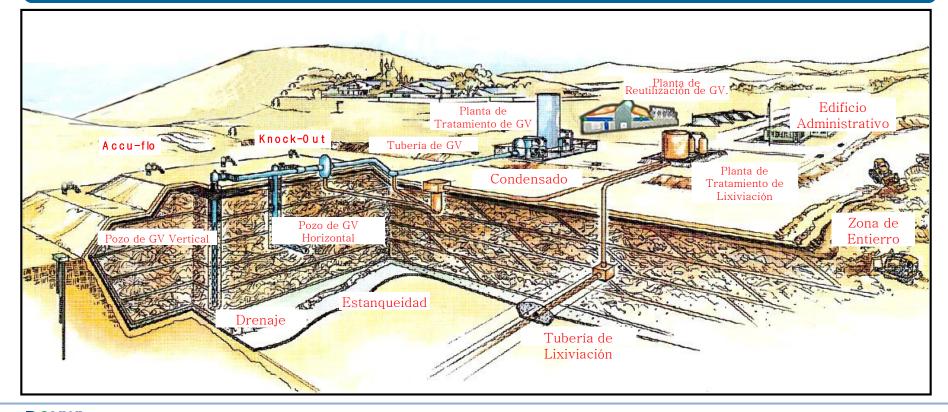

Planta de Utilización de Biogás

Suministro de Electricidad y Calor por cogeneración

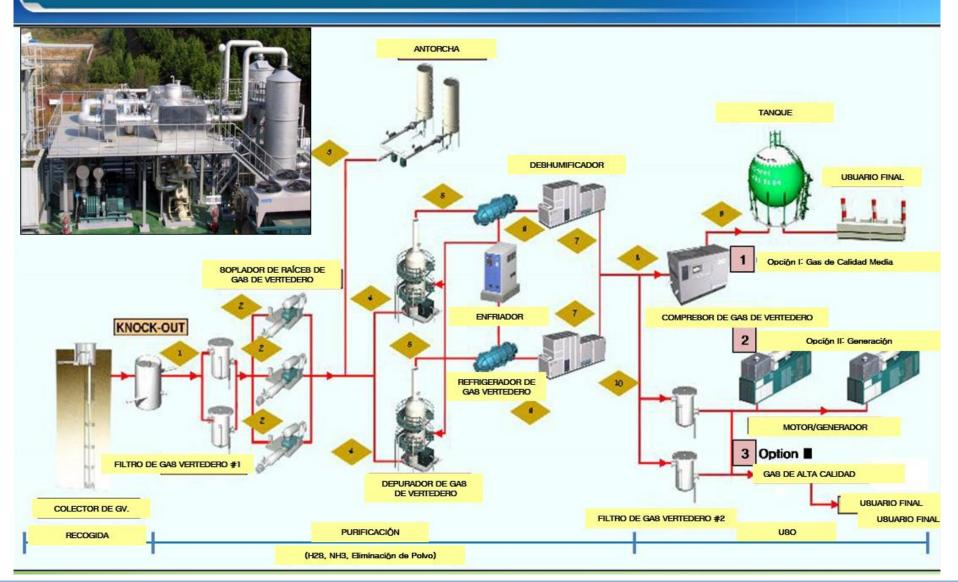
Electricidad: Suministro para uso interno y otras instalaciones

Agua caliente : Aire acondicionado y calefacción Elevación de la temperatura en el tanque de digestión

A. Aprovechamiento Energético de Residuos Alimenticios



B. Conversión de Gas de Vertedero a Energía


- Principio de generación
 - > El gas de vertedero (GV) contiene 50% de CH4 y 50% de CO2 al mantener el estado de descomposición anaerobia de los compuestos orgánicos.

El gas metano se utiliza de manera directa o por proceso de refinación.

- Caraterísticas del Gas de Vertedero
 - > El gas de vertedero es un gas metano que se genera en los rellenos sanitarios y se utiliza para generar gas.
 - > Ventaja: Uso de gas metano de manera directa o por proceso de refinación.

B. Conversión de Gas de Vertedero a Energía

B. Conversión de Gas de Vertedero a Energía

Producción de energía: 50Mw/hr

6. DISPOSICIÓN FINAL

A. Relleno Sanitario

Objetivos

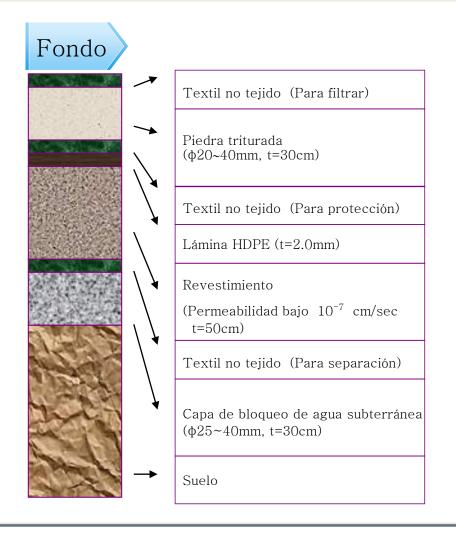
- Disposición final sanitaria
- Prevención de la contaminación en áreas aledañas por tratamiento de lixiviación.
- •Promoción de la estabilización de residuos
- Recuperación de energía mediante Gas de Vertedero

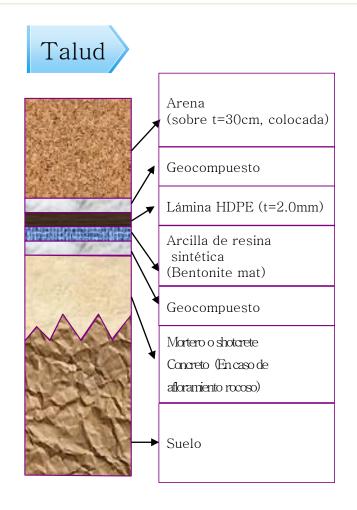
Proceso del Relleno Sanitario

- Construcción del Relleno Sanitario: Planta de Báscula, Dique, Planta de drenaje de aguas pluviales, Planta de tratamiento de aguas subterráneas y Plantas auxiliares.
- Operación: Cobertura Diaria e Intermedia, Recogida de Gas de Vertedero
- Gestión: Cobertura final, monitoreo de la estabilización

6 DISPOSICIÓN FINAL

A. Relleno Sanitario

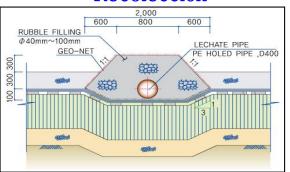




6. DISPOSICIÓN FINAL

A. Relleno Sanitario

Sistema de Revestimiento en Corea



6. DISPOSICIÓN FINAL

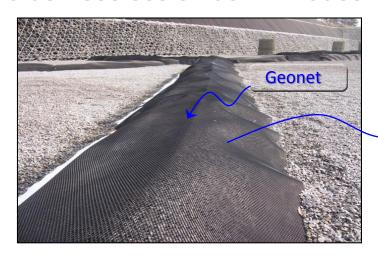
A. Relleno Sanitario

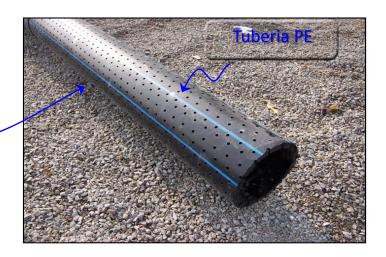
Sistema de Recolección de Lixiviados

Tubería de Drenaje y Recolección

Pozo vertical de Exclusión

Capa de Drenaje y Recolección





6 DISPOSICIÓN FINAL

A. Relleno Sanitario

Tubería de Recolección de Lixiviados

Pozo de Recolección de Lixiviados

6. DISPOSICIÓN FINAL

B. Relleno Sanitario

Gracias

DOHWA Engineering Co., Ltd

Dohwa Tower, 438, Samseong-ro, Gangnam-Gu, Seoul, Korea

Tel: +82-2-6323-4210

innoyou@dohwa.co.kr

www.dohwa.co.kr